Michael W Lewis, Caitlin M King, Kamila Wisniewska, Matthew J Regner, Alisha Coffey, Michael R Kelly, Raul Mendez-Giraldez, Eric S Davis, Douglas H Phanstiel, Hector L Franco
{"title":"CRISPR Screening of Transcribed Super-Enhancers Identifies Drivers of Triple-Negative Breast Cancer Progression.","authors":"Michael W Lewis, Caitlin M King, Kamila Wisniewska, Matthew J Regner, Alisha Coffey, Michael R Kelly, Raul Mendez-Giraldez, Eric S Davis, Douglas H Phanstiel, Hector L Franco","doi":"10.1158/0008-5472.CAN-23-3995","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is the most therapeutically recalcitrant form of breast cancer, which is due in part to the paucity of targeted therapies. A systematic analysis of regulatory elements that extend beyond protein-coding genes could uncover avenues for therapeutic intervention. To this end, we analyzed the regulatory mechanisms of TNBC-specific transcriptional enhancers together with their noncoding enhancer RNA (eRNA) transcripts. The functions of the top 30 eRNA-producing super-enhancers were systematically probed using high-throughput CRISPR-interference assays coupled to RNA sequencing that enabled unbiased detection of target genes genome-wide. Generation of high-resolution Hi-C chromatin interaction maps enabled annotation of the direct target genes for each super-enhancer, which highlighted their proclivity for genes that portend worse clinical outcomes in patients with TNBC. Illustrating the utility of this dataset, deletion of an identified super-enhancer controlling the nearby PODXL gene or specific degradation of its eRNAs led to profound inhibitory effects on target gene expression, cell proliferation, and migration. Furthermore, loss of this super-enhancer suppressed tumor growth and metastasis in TNBC mouse xenograft models. Single-cell RNA sequencing and assay for transposase-accessible chromatin with high-throughput sequencing analyses demonstrated the enhanced activity of this super-enhancer within the malignant cells of TNBC tumor specimens compared with nonmalignant cell types. Collectively, this work examines several fundamental questions about how regulatory information encoded into eRNA-producing super-enhancers drives gene expression networks that underlie the biology of TNBC. Significance: Integrative analysis of eRNA-producing super-enhancers defines molecular mechanisms controlling global patterns of gene expression that regulate clinical outcomes in breast cancer, highlighting the potential of enhancers as biomarkers and therapeutic targets.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"3684-3700"},"PeriodicalIF":12.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-23-3995","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-negative breast cancer (TNBC) is the most therapeutically recalcitrant form of breast cancer, which is due in part to the paucity of targeted therapies. A systematic analysis of regulatory elements that extend beyond protein-coding genes could uncover avenues for therapeutic intervention. To this end, we analyzed the regulatory mechanisms of TNBC-specific transcriptional enhancers together with their noncoding enhancer RNA (eRNA) transcripts. The functions of the top 30 eRNA-producing super-enhancers were systematically probed using high-throughput CRISPR-interference assays coupled to RNA sequencing that enabled unbiased detection of target genes genome-wide. Generation of high-resolution Hi-C chromatin interaction maps enabled annotation of the direct target genes for each super-enhancer, which highlighted their proclivity for genes that portend worse clinical outcomes in patients with TNBC. Illustrating the utility of this dataset, deletion of an identified super-enhancer controlling the nearby PODXL gene or specific degradation of its eRNAs led to profound inhibitory effects on target gene expression, cell proliferation, and migration. Furthermore, loss of this super-enhancer suppressed tumor growth and metastasis in TNBC mouse xenograft models. Single-cell RNA sequencing and assay for transposase-accessible chromatin with high-throughput sequencing analyses demonstrated the enhanced activity of this super-enhancer within the malignant cells of TNBC tumor specimens compared with nonmalignant cell types. Collectively, this work examines several fundamental questions about how regulatory information encoded into eRNA-producing super-enhancers drives gene expression networks that underlie the biology of TNBC. Significance: Integrative analysis of eRNA-producing super-enhancers defines molecular mechanisms controlling global patterns of gene expression that regulate clinical outcomes in breast cancer, highlighting the potential of enhancers as biomarkers and therapeutic targets.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.