Pub Date : 2024-11-15DOI: 10.1158/0008-5472.CAN-24-2905
Wenyao Zhen, Xiaoyuan Chen
A range of advanced nanovaccines (NV) combined with immunotherapies has recently emerged for treating malignant tumors and has demonstrated promising tumor-suppressive effects. Nevertheless, their effectiveness is often limited by immunosuppression within the tumor microenvironment. To overcome this challenge, new approaches for NV development are required to improve antigen cross-presentation and to remodel the tumor microenvironment. In this issue of Cancer Research, Zhou and colleagues have developed a photo-enhanceable inflammasome-activating nanovaccine (PIN) designed for precise, in situ delivery of a tumor antigen and a hydrophobic small molecule that activates the NLRP3 inflammasome pathway. Near infrared light exposure enables the accumulation of PINs at tumor sites by inducing a photo-triggered charge reversal in the BODIPY-modified PAMAM nanocarrier. Systemic administration of PINs resulted in effective intratumoral activation of the NLRP3 inflammasome and antigen cross-presentation in antigen-presenting cells upon light exposure, leading to enhanced immune responses through increased proinflammatory cytokine production without significant systemic toxicity. Importantly, PINs also enhanced the efficacy of immune checkpoint blockade and promoted the development of long-term immune memory in mouse models of melanoma and hepatocellular carcinoma. Overall, inflammasome-activating NVs represent a cancer immunotherapy strategy by harnessing the innate immune system to achieve robust responses against tumors. Ongoing research and development are crucial to addressing current limitations and advancing this innovative technology toward clinical application. See related article by Zhou et al., p. 3834.
{"title":"Inflammasome-Activating Nanovaccine for Cancer Immunotherapy.","authors":"Wenyao Zhen, Xiaoyuan Chen","doi":"10.1158/0008-5472.CAN-24-2905","DOIUrl":"10.1158/0008-5472.CAN-24-2905","url":null,"abstract":"<p><p>A range of advanced nanovaccines (NV) combined with immunotherapies has recently emerged for treating malignant tumors and has demonstrated promising tumor-suppressive effects. Nevertheless, their effectiveness is often limited by immunosuppression within the tumor microenvironment. To overcome this challenge, new approaches for NV development are required to improve antigen cross-presentation and to remodel the tumor microenvironment. In this issue of Cancer Research, Zhou and colleagues have developed a photo-enhanceable inflammasome-activating nanovaccine (PIN) designed for precise, in situ delivery of a tumor antigen and a hydrophobic small molecule that activates the NLRP3 inflammasome pathway. Near infrared light exposure enables the accumulation of PINs at tumor sites by inducing a photo-triggered charge reversal in the BODIPY-modified PAMAM nanocarrier. Systemic administration of PINs resulted in effective intratumoral activation of the NLRP3 inflammasome and antigen cross-presentation in antigen-presenting cells upon light exposure, leading to enhanced immune responses through increased proinflammatory cytokine production without significant systemic toxicity. Importantly, PINs also enhanced the efficacy of immune checkpoint blockade and promoted the development of long-term immune memory in mouse models of melanoma and hepatocellular carcinoma. Overall, inflammasome-activating NVs represent a cancer immunotherapy strategy by harnessing the innate immune system to achieve robust responses against tumors. Ongoing research and development are crucial to addressing current limitations and advancing this innovative technology toward clinical application. See related article by Zhou et al., p. 3834.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"84 22","pages":"3709-3711"},"PeriodicalIF":12.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1158/0008-5472.CAN-23-4027
Ziyan Xu, Alexandra Kuhlmann-Hogan, Shihao Xu, Hubert Tseng, Dan Chen, Shirong Tan, Ming Sun, Victoria Tripple, Marcus Bosenberg, Kathryn Miller-Jensen, Susan M Kaech
Tumor-associated macrophages (TAMs) are a heterogenous population of myeloid cells that dictate the inflammatory tone of the tumor microenvironment (TME). In this study, we unveiled a mechanism by which scavenger receptor CD36 suppresses TAM inflammatory states. CD36 was upregulated in TAMs and associated with immunosuppressive features, and myeloid-specific deletion of CD36 significantly reduced tumor growth. Moreover, CD36-deficient TAMs acquired inflammatory signatures including elevated type-I interferon (IFN-I) production, mirroring the inverse correlation between CD36 and IFN-I response observed in cancer patients. IFN-I, especially IFNβ, produced by CD36-deficient TAMs directly induced tumor cell quiescence and delayed tumor growth. Mechanistically, CD36 acted as a natural suppressor of IFN-I signaling in macrophages through p38 activation downstream of oxidized lipid signaling. These findings establish CD36 as a critical regulator of TAM function and the tumor inflammatory microenvironment, providing additional rationale for pharmacological inhibition of CD36 to rejuvenate anti-tumor immunity.
肿瘤相关巨噬细胞(TAMs)是髓系细胞的一个异质群体,它决定着肿瘤微环境(TME)的炎症基调。本研究揭示了清道夫受体 CD36 抑制 TAM 炎症状态的机制。CD36在TAMs中上调并与免疫抑制特征相关,髓系特异性删除CD36可显著降低肿瘤生长。此外,CD36缺失的TAM获得了炎症特征,包括I型干扰素(IFN-I)分泌升高,这反映了在癌症患者中观察到的CD36与IFN-I反应之间的反相关性。CD36缺陷TAMs产生的IFN-I,尤其是IFNβ,直接诱导肿瘤细胞静止并延缓肿瘤生长。从机理上讲,CD36 通过氧化脂质信号下游的 p38 激活,对巨噬细胞中的 IFN-I 信号起到天然抑制作用。这些发现确定了 CD36 是 TAM 功能和肿瘤炎症微环境的关键调节因子,为药物抑制 CD36 以恢复抗肿瘤免疫力提供了更多的依据。
{"title":"Scavenger Receptor CD36 in Tumor-Associated Macrophages Promotes Cancer Progression by Dampening Type I Interferon Signaling.","authors":"Ziyan Xu, Alexandra Kuhlmann-Hogan, Shihao Xu, Hubert Tseng, Dan Chen, Shirong Tan, Ming Sun, Victoria Tripple, Marcus Bosenberg, Kathryn Miller-Jensen, Susan M Kaech","doi":"10.1158/0008-5472.CAN-23-4027","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-23-4027","url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) are a heterogenous population of myeloid cells that dictate the inflammatory tone of the tumor microenvironment (TME). In this study, we unveiled a mechanism by which scavenger receptor CD36 suppresses TAM inflammatory states. CD36 was upregulated in TAMs and associated with immunosuppressive features, and myeloid-specific deletion of CD36 significantly reduced tumor growth. Moreover, CD36-deficient TAMs acquired inflammatory signatures including elevated type-I interferon (IFN-I) production, mirroring the inverse correlation between CD36 and IFN-I response observed in cancer patients. IFN-I, especially IFNβ, produced by CD36-deficient TAMs directly induced tumor cell quiescence and delayed tumor growth. Mechanistically, CD36 acted as a natural suppressor of IFN-I signaling in macrophages through p38 activation downstream of oxidized lipid signaling. These findings establish CD36 as a critical regulator of TAM function and the tumor inflammatory microenvironment, providing additional rationale for pharmacological inhibition of CD36 to rejuvenate anti-tumor immunity.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1158/0008-5472.CAN-24-4309
Phoebe Carter, Yibin Kang
Epithelial-to-mesenchymal transition (EMT) is known to play roles in orchestrating cellular plasticity across many physiological and pathological contexts. Partial EMT, wherein cells maintain both epithelial and mesenchymal features, is gaining recognition for its functional importance in cancer in recent years. There are many factors regulating both partial and full EMT, and the precise mechanisms underlying these processes vary depending on the biological context. Furthermore, how different EMT states cooperate to create a heterogeneous tumor population and promote different pro-malignant features remains largely undefined. In a recent study published in Nature Cancer, Youssef and colleagues described how two disparate EMT programs, active in either organ fibrosis or embryonic development, are utilized within different cells within the same murine mammary tumor model. This work provides mechanistic insight into the development of intratumoral heterogeneity, providing evidence for the cooperation between the two EMT trajectories.
{"title":"Tumor heterogeneity and cooperating cancer hallmarks driven by divergent EMT programs.","authors":"Phoebe Carter, Yibin Kang","doi":"10.1158/0008-5472.CAN-24-4309","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-4309","url":null,"abstract":"<p><p>Epithelial-to-mesenchymal transition (EMT) is known to play roles in orchestrating cellular plasticity across many physiological and pathological contexts. Partial EMT, wherein cells maintain both epithelial and mesenchymal features, is gaining recognition for its functional importance in cancer in recent years. There are many factors regulating both partial and full EMT, and the precise mechanisms underlying these processes vary depending on the biological context. Furthermore, how different EMT states cooperate to create a heterogeneous tumor population and promote different pro-malignant features remains largely undefined. In a recent study published in Nature Cancer, Youssef and colleagues described how two disparate EMT programs, active in either organ fibrosis or embryonic development, are utilized within different cells within the same murine mammary tumor model. This work provides mechanistic insight into the development of intratumoral heterogeneity, providing evidence for the cooperation between the two EMT trajectories.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.1158/0008-5472.CAN-23-0189
Hui Zhang, Zhimin Du, Chenggong Tu, Xinyan Zhou, Eline Menu, Jinheng Wang
Bone marrow stromal cell (BMSC)-derived small extracellular vesicles (sEV) promote drug resistance to bortezomib in multiple myeloma cells. Elucidating the components of BMSC sEV that induce drug resistance in multiple myeloma cells could help identify strategies to overcome resistance. Considering the hypoxic nature of the myeloma microenvironment, we explored the role of hypoxia in regulating BMSC sEV cargo and investigated whether hypoxia-driven sEV miRNAs contribute to the drug resistance in multiple myeloma cells. Hypoxia increased the release of sEVs from BMSCs, and these sEVs more strongly attenuated bortezomib sensitivity in multiple myeloma cells than sEVs from BMSCs under normoxic conditions. RNA sequencing revealed that significantly elevated levels of miR-140-5p and miR-28-3p were enclosed in hypoxic BMSC-derived sEVs. Both miR-140-5p and miR-28-3p conferred bortezomib resistance in multiple myeloma cells by synergistically targeting SPRED1, a member of the Sprouty protein family that regulates MAPK activation. SPRED1 inhibition reduced sensitivity to bortezomib in multiple myeloma cells through activating MAPK-related pathways and significantly promoted multiple myeloma bortezomib resistance and tumor growth in a mouse model. These findings shed light on the role of hypoxia-induced miRNAs shuttled in BMSC-derived sEVs to multiple myeloma cells in inducing drug resistance and identify the miR-140-5p/miR-28-3p/SPRED1/MAPK pathway as a potential targetable axis for treating multiple myeloma.
Significance: Hypoxia induces stromal cells to secrete extracellular vesicles with increased miR-140-5p and miR-28-3p that are transferred to multiple myeloma cells and drive drug resistance by increasing the MAPK signaling.
{"title":"Hypoxic Bone Marrow Stromal Cells Secrete miR-140-5p and miR-28-3p That Target SPRED1 to Confer Drug Resistance in Multiple Myeloma.","authors":"Hui Zhang, Zhimin Du, Chenggong Tu, Xinyan Zhou, Eline Menu, Jinheng Wang","doi":"10.1158/0008-5472.CAN-23-0189","DOIUrl":"10.1158/0008-5472.CAN-23-0189","url":null,"abstract":"<p><p>Bone marrow stromal cell (BMSC)-derived small extracellular vesicles (sEV) promote drug resistance to bortezomib in multiple myeloma cells. Elucidating the components of BMSC sEV that induce drug resistance in multiple myeloma cells could help identify strategies to overcome resistance. Considering the hypoxic nature of the myeloma microenvironment, we explored the role of hypoxia in regulating BMSC sEV cargo and investigated whether hypoxia-driven sEV miRNAs contribute to the drug resistance in multiple myeloma cells. Hypoxia increased the release of sEVs from BMSCs, and these sEVs more strongly attenuated bortezomib sensitivity in multiple myeloma cells than sEVs from BMSCs under normoxic conditions. RNA sequencing revealed that significantly elevated levels of miR-140-5p and miR-28-3p were enclosed in hypoxic BMSC-derived sEVs. Both miR-140-5p and miR-28-3p conferred bortezomib resistance in multiple myeloma cells by synergistically targeting SPRED1, a member of the Sprouty protein family that regulates MAPK activation. SPRED1 inhibition reduced sensitivity to bortezomib in multiple myeloma cells through activating MAPK-related pathways and significantly promoted multiple myeloma bortezomib resistance and tumor growth in a mouse model. These findings shed light on the role of hypoxia-induced miRNAs shuttled in BMSC-derived sEVs to multiple myeloma cells in inducing drug resistance and identify the miR-140-5p/miR-28-3p/SPRED1/MAPK pathway as a potential targetable axis for treating multiple myeloma.</p><p><strong>Significance: </strong>Hypoxia induces stromal cells to secrete extracellular vesicles with increased miR-140-5p and miR-28-3p that are transferred to multiple myeloma cells and drive drug resistance by increasing the MAPK signaling.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"39-55"},"PeriodicalIF":11.2,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41100779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.1158/0008-5472.CAN-23-1992
Rossella Marullo, Sarah C Rutherford, Maria V Revuelta, Nahuel Zamponi, Biljana Culjkovic-Kraljacic, Nikita Kotlov, Nicolás Di Siervi, Juan Lara-Garcia, John N Allan, Jia Ruan, Richard R Furman, Zhengming Chen, Tsiporah B Shore, Adrienne A Phillips, Sebastian Mayer, Jingmei Hsu, Koen van Besien, John P Leonard, Katherine L B Borden, Giorgio Inghirami, Peter Martin, Leandro Cerchietti
Exportin-1 (XPO1), the main soluble nuclear export receptor in eukaryotic cells, is frequently overexpressed in diffuse large B-cell lymphoma (DLBCL). A selective XPO1 inhibitor, selinexor, received approval as single agent for relapsed or refractory (R/R) DLBCL. Elucidating the mechanisms by which XPO1 overexpression supports cancer cells could facilitate further clinical development of XPO1 inhibitors. We uncovered here that XPO1 overexpression increases tolerance to genotoxic stress, leading to a poor response to chemoimmunotherapy. Upon DNA damage induced by MYC expression or exogenous compounds, XPO1 bound and exported EIF4E and THOC4 carrying DNA damage repair mRNAs, thereby increasing synthesis of DNA damage repair proteins under conditions of increased turnover. Consequently, XPO1 inhibition decreased the capacity of lymphoma cells to repair DNA damage and ultimately resulted in increased cytotoxicity. In a phase I clinical trial conducted in R/R DLBCL, the combination of selinexor with second-line chemoimmunotherapy was tolerated with early indication of efficacy. Overall, this study reveals that XPO1 overexpression plays a critical role in the increased tolerance of cancer cells to DNA damage while providing new insights to optimize the clinical development of XPO1 inhibitors.
Significance: XPO1 regulates the dynamic ribonucleoprotein nuclear export in response to genotoxic stress to support tolerance and can be targeted to enhance the sensitivity of cancer cells to endogenous and exogenous DNA damage. See related commentary by Knittel and Reinhardt, p. 3.
{"title":"XPO1 Enables Adaptive Regulation of mRNA Export Required for Genotoxic Stress Tolerance in Cancer Cells.","authors":"Rossella Marullo, Sarah C Rutherford, Maria V Revuelta, Nahuel Zamponi, Biljana Culjkovic-Kraljacic, Nikita Kotlov, Nicolás Di Siervi, Juan Lara-Garcia, John N Allan, Jia Ruan, Richard R Furman, Zhengming Chen, Tsiporah B Shore, Adrienne A Phillips, Sebastian Mayer, Jingmei Hsu, Koen van Besien, John P Leonard, Katherine L B Borden, Giorgio Inghirami, Peter Martin, Leandro Cerchietti","doi":"10.1158/0008-5472.CAN-23-1992","DOIUrl":"10.1158/0008-5472.CAN-23-1992","url":null,"abstract":"<p><p>Exportin-1 (XPO1), the main soluble nuclear export receptor in eukaryotic cells, is frequently overexpressed in diffuse large B-cell lymphoma (DLBCL). A selective XPO1 inhibitor, selinexor, received approval as single agent for relapsed or refractory (R/R) DLBCL. Elucidating the mechanisms by which XPO1 overexpression supports cancer cells could facilitate further clinical development of XPO1 inhibitors. We uncovered here that XPO1 overexpression increases tolerance to genotoxic stress, leading to a poor response to chemoimmunotherapy. Upon DNA damage induced by MYC expression or exogenous compounds, XPO1 bound and exported EIF4E and THOC4 carrying DNA damage repair mRNAs, thereby increasing synthesis of DNA damage repair proteins under conditions of increased turnover. Consequently, XPO1 inhibition decreased the capacity of lymphoma cells to repair DNA damage and ultimately resulted in increased cytotoxicity. In a phase I clinical trial conducted in R/R DLBCL, the combination of selinexor with second-line chemoimmunotherapy was tolerated with early indication of efficacy. Overall, this study reveals that XPO1 overexpression plays a critical role in the increased tolerance of cancer cells to DNA damage while providing new insights to optimize the clinical development of XPO1 inhibitors.</p><p><strong>Significance: </strong>XPO1 regulates the dynamic ribonucleoprotein nuclear export in response to genotoxic stress to support tolerance and can be targeted to enhance the sensitivity of cancer cells to endogenous and exogenous DNA damage. See related commentary by Knittel and Reinhardt, p. 3.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"101-117"},"PeriodicalIF":11.2,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41108499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.1158/0008-5472.CAN-23-0104
Silvia Pietrobono, Fabio Sabbadini, Monica Bertolini, Domenico Mangiameli, Veronica De Vita, Federica Fazzini, Giulia Lunardi, Simona Casalino, Enza Scarlato, Valeria Merz, Camilla Zecchetto, Alberto Quinzii, Giusy Di Conza, Michael Lahn, Davide Melisi
The TGFβ receptor inhibitor galunisertib demonstrated efficacy in patients with pancreatic ductal adenocarcinoma (PDAC) in the randomized phase II H9H-MC-JBAJ study, which compared galunisertib plus the chemotherapeutic agent gemcitabine with gemcitabine alone. However, additional stromal paracrine signals might confer adaptive resistance that limits the efficacy of this therapeutic strategy. Here, we found that autotaxin, a secreted enzyme that promotes inflammation and fibrosis by generating lysophosphatidic acid (LPA), mediates adaptive resistance to TGFβ receptor inhibition. Blocking TGFβ signaling prompted the skewing of cancer-associated fibroblasts (CAF) toward an inflammatory (iCAF) phenotype. iCAFs were responsible for a significant secretion of autotaxin. Paracrine autotaxin increased LPA-NFκB signaling in tumor cells that triggered treatment resistance. The autotaxin inhibitor IOA-289 suppressed NFκB activation in PDAC cells and overcame resistance to galunisertib and gemcitabine. In immunocompetent orthotopic murine models, IOA-289 synergized with galunisertib in restoring sensitivity to gemcitabine. Most importantly, treatment with galunisertib significantly increased plasma levels of autotaxin in patients enrolled in the H9H-MC-JBAJ study, and median progression-free survival was significantly longer in patients without an increase of autotaxin upon treatment with galunisertib compared with those with increased autotaxin. These results establish that autotaxin secretion by CAFs is increased by TGFβ inhibition and that circulating autotaxin levels predict response to the combination treatment approach of gemcitabine plus galunisertib.
Significance: TGFβ inhibition skews cancer-associated fibroblasts toward an inflammatory phenotype that secretes autotaxin to drive adaptive resistance in PDAC, revealing autotaxin as a therapeutic target and biomarker of galunisertib response.
{"title":"Autotaxin Secretion Is a Stromal Mechanism of Adaptive Resistance to TGFβ Inhibition in Pancreatic Ductal Adenocarcinoma.","authors":"Silvia Pietrobono, Fabio Sabbadini, Monica Bertolini, Domenico Mangiameli, Veronica De Vita, Federica Fazzini, Giulia Lunardi, Simona Casalino, Enza Scarlato, Valeria Merz, Camilla Zecchetto, Alberto Quinzii, Giusy Di Conza, Michael Lahn, Davide Melisi","doi":"10.1158/0008-5472.CAN-23-0104","DOIUrl":"10.1158/0008-5472.CAN-23-0104","url":null,"abstract":"<p><p>The TGFβ receptor inhibitor galunisertib demonstrated efficacy in patients with pancreatic ductal adenocarcinoma (PDAC) in the randomized phase II H9H-MC-JBAJ study, which compared galunisertib plus the chemotherapeutic agent gemcitabine with gemcitabine alone. However, additional stromal paracrine signals might confer adaptive resistance that limits the efficacy of this therapeutic strategy. Here, we found that autotaxin, a secreted enzyme that promotes inflammation and fibrosis by generating lysophosphatidic acid (LPA), mediates adaptive resistance to TGFβ receptor inhibition. Blocking TGFβ signaling prompted the skewing of cancer-associated fibroblasts (CAF) toward an inflammatory (iCAF) phenotype. iCAFs were responsible for a significant secretion of autotaxin. Paracrine autotaxin increased LPA-NFκB signaling in tumor cells that triggered treatment resistance. The autotaxin inhibitor IOA-289 suppressed NFκB activation in PDAC cells and overcame resistance to galunisertib and gemcitabine. In immunocompetent orthotopic murine models, IOA-289 synergized with galunisertib in restoring sensitivity to gemcitabine. Most importantly, treatment with galunisertib significantly increased plasma levels of autotaxin in patients enrolled in the H9H-MC-JBAJ study, and median progression-free survival was significantly longer in patients without an increase of autotaxin upon treatment with galunisertib compared with those with increased autotaxin. These results establish that autotaxin secretion by CAFs is increased by TGFβ inhibition and that circulating autotaxin levels predict response to the combination treatment approach of gemcitabine plus galunisertib.</p><p><strong>Significance: </strong>TGFβ inhibition skews cancer-associated fibroblasts toward an inflammatory phenotype that secretes autotaxin to drive adaptive resistance in PDAC, revealing autotaxin as a therapeutic target and biomarker of galunisertib response.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"118-132"},"PeriodicalIF":11.2,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758691/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41178115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Expanding the utility of chimeric antigen receptor (CAR)-T cells in solid tumors requires improving their efficacy and safety. Hypoxia is a feature of most solid tumors that could be used to help CAR-T cells discriminate tumors from normal tissues. In this study, we developed hypoxia-responsive CAR-T cells by engineering the CAR to be under regulation of hypoxia-responsive elements and selected the optimal structure (5H1P-CEA CAR), which can be activated in the tumor hypoxic microenvironment to induce CAR-T cells with high polyfunctionality. Hypoxia-responsive CAR T cells were in a "resting" state with low CAR expression under normoxic conditions. Compared with conventional CAR-T cells, hypoxia-responsive CAR-T cells maintained lower differentiation and displayed enhanced oxidative metabolism and proliferation during cultivation, and they sowed a capacity to alleviate the negative effects of hypoxia on T-cell proliferation and metabolism. Furthermore, 5H1P-CEA CAR-T cells exhibited decreased T-cell exhaustion and improved T-cell phenotype in vivo. In patient-derived xenograft models, hypoxia-responsive CAR-T cells induced more durable antitumor activity than their conventional counterparts. Overall, this study provides an approach to limit CAR expression to the hypoxic tumor microenvironment that could help to enhance CAR T-cell efficacy and safety in solid tumors.
Significance: Engineering CAR-T cells to upregulate CAR expression under hypoxic conditions induces metabolic reprogramming, reduces differentiation, and increases proliferation to enhance their antitumor activity, providing a strategy to improve efficacy and safety.
{"title":"Hypoxia-Responsive CAR-T Cells Exhibit Reduced Exhaustion and Enhanced Efficacy in Solid Tumors.","authors":"Xiuxiu Zhu, Jun Chen, Wuling Li, Yanmin Xu, Juanjuan Shan, Juan Hong, Yongchun Zhao, Huailong Xu, Jiabin Ma, Junjie Shen, Cheng Qian","doi":"10.1158/0008-5472.CAN-23-1038","DOIUrl":"10.1158/0008-5472.CAN-23-1038","url":null,"abstract":"<p><p>Expanding the utility of chimeric antigen receptor (CAR)-T cells in solid tumors requires improving their efficacy and safety. Hypoxia is a feature of most solid tumors that could be used to help CAR-T cells discriminate tumors from normal tissues. In this study, we developed hypoxia-responsive CAR-T cells by engineering the CAR to be under regulation of hypoxia-responsive elements and selected the optimal structure (5H1P-CEA CAR), which can be activated in the tumor hypoxic microenvironment to induce CAR-T cells with high polyfunctionality. Hypoxia-responsive CAR T cells were in a \"resting\" state with low CAR expression under normoxic conditions. Compared with conventional CAR-T cells, hypoxia-responsive CAR-T cells maintained lower differentiation and displayed enhanced oxidative metabolism and proliferation during cultivation, and they sowed a capacity to alleviate the negative effects of hypoxia on T-cell proliferation and metabolism. Furthermore, 5H1P-CEA CAR-T cells exhibited decreased T-cell exhaustion and improved T-cell phenotype in vivo. In patient-derived xenograft models, hypoxia-responsive CAR-T cells induced more durable antitumor activity than their conventional counterparts. Overall, this study provides an approach to limit CAR expression to the hypoxic tumor microenvironment that could help to enhance CAR T-cell efficacy and safety in solid tumors.</p><p><strong>Significance: </strong>Engineering CAR-T cells to upregulate CAR expression under hypoxic conditions induces metabolic reprogramming, reduces differentiation, and increases proliferation to enhance their antitumor activity, providing a strategy to improve efficacy and safety.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"84-100"},"PeriodicalIF":11.2,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.1158/0008-5472.CAN-23-0801
Guillermo O Rangel Rivera, Connor J Dwyer, Hannah M Knochelmann, Aubrey S Smith, Bülent Arman Aksoy, Anna C Cole, Megan M Wyatt, Soundharya Kumaresan, Jessica E Thaxton, Gregory B Lesinski, Chrystal M Paulos
Generating stem-like memory T cells (TSCM) is a potential strategy to improve adoptive immunotherapy. Elucidating optimal ways to modulate signaling pathways that enrich TSCM properties could identify approaches to achieve this goal. We discovered herein that blocking the PI3Kδ pathway pharmaceutically to varying degrees can generate T cells with increasingly heightened stemness properties, based on the progressive enrichment of the transcription factors Tcf1 and Lef1. T cells with enhanced stemness features exhibited metabolic plasticity, marked by improved mitochondrial function and glucose uptake after tumor recognition. Conversely, T cells with low or medium stemness were less metabolically dynamic, vulnerable to antigen-induced cell death, and expressed more inhibitory checkpoint receptors. Only T-cell receptor-specific or chimeric antigen receptor (CAR)-specific T cells with high stemness persisted in vivo and mounted protective immunity to tumors. Likewise, the strongest level of PI3Kδ blockade in vitro generated human tumor-infiltrating lymphocytes and CAR T cells with elevated stemness properties, in turn bolstering their capacity to regress human solid tumors. The stemness level of T cells in vitro was important, ultimately impacting their efficacy in mice bearing three distinct solid tumors. Lef1 and Tcf1 sustained antitumor protection by donor high CD8+ TSCM or CD4+ Th17SCM, as deletion of either one compromised the therapeutic efficacy. Collectively, these findings highlight the importance of strategic modulation of PI3Kδ signaling in T cells to induce stemness and lasting protective responses to solid tumors.
Significance: Elevating T-cell stemness by progressively blocking PI3Kδ signaling during ex vivo manufacturing of adoptive cell therapies alters metabolic and functional properties to enhance antitumor immunity dependent on Tcf1 and Lef1.
{"title":"Progressively Enhancing Stemness of Adoptively Transferred T Cells with PI3Kδ Blockade Improves Metabolism and Antitumor Immunity.","authors":"Guillermo O Rangel Rivera, Connor J Dwyer, Hannah M Knochelmann, Aubrey S Smith, Bülent Arman Aksoy, Anna C Cole, Megan M Wyatt, Soundharya Kumaresan, Jessica E Thaxton, Gregory B Lesinski, Chrystal M Paulos","doi":"10.1158/0008-5472.CAN-23-0801","DOIUrl":"10.1158/0008-5472.CAN-23-0801","url":null,"abstract":"<p><p>Generating stem-like memory T cells (TSCM) is a potential strategy to improve adoptive immunotherapy. Elucidating optimal ways to modulate signaling pathways that enrich TSCM properties could identify approaches to achieve this goal. We discovered herein that blocking the PI3Kδ pathway pharmaceutically to varying degrees can generate T cells with increasingly heightened stemness properties, based on the progressive enrichment of the transcription factors Tcf1 and Lef1. T cells with enhanced stemness features exhibited metabolic plasticity, marked by improved mitochondrial function and glucose uptake after tumor recognition. Conversely, T cells with low or medium stemness were less metabolically dynamic, vulnerable to antigen-induced cell death, and expressed more inhibitory checkpoint receptors. Only T-cell receptor-specific or chimeric antigen receptor (CAR)-specific T cells with high stemness persisted in vivo and mounted protective immunity to tumors. Likewise, the strongest level of PI3Kδ blockade in vitro generated human tumor-infiltrating lymphocytes and CAR T cells with elevated stemness properties, in turn bolstering their capacity to regress human solid tumors. The stemness level of T cells in vitro was important, ultimately impacting their efficacy in mice bearing three distinct solid tumors. Lef1 and Tcf1 sustained antitumor protection by donor high CD8+ TSCM or CD4+ Th17SCM, as deletion of either one compromised the therapeutic efficacy. Collectively, these findings highlight the importance of strategic modulation of PI3Kδ signaling in T cells to induce stemness and lasting protective responses to solid tumors.</p><p><strong>Significance: </strong>Elevating T-cell stemness by progressively blocking PI3Kδ signaling during ex vivo manufacturing of adoptive cell therapies alters metabolic and functional properties to enhance antitumor immunity dependent on Tcf1 and Lef1.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"69-83"},"PeriodicalIF":11.2,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41100240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.1158/0008-5472.CAN-23-1129
Judith Mary Hariprakash, Elisa Salviato, Federica La Mastra, Endre Sebestyén, Ilario Tagliaferri, Raquel Sofia Silva, Federica Lucini, Lorenzo Farina, Mario Cinquanta, Ilaria Rancati, Mirko Riboni, Simone Paolo Minardi, Luca Roz, Francesca Gorini, Chiara Lanzuolo, Stefano Casola, Francesco Ferrari
Enhancers are noncoding regulatory DNA regions that modulate the transcription of target genes, often over large distances along with the genomic sequence. Enhancer alterations have been associated with various pathological conditions, including cancer. However, the identification and characterization of somatic mutations in noncoding regulatory regions with a functional effect on tumorigenesis and prognosis remain a major challenge. Here, we present a strategy for detecting and characterizing enhancer mutations in a genome-wide analysis of patient cohorts, across three lung cancer subtypes. Lung tissue-specific enhancers were defined by integrating experimental data and public epigenomic profiles, and the genome-wide enhancer-target gene regulatory network of lung cells was constructed by integrating chromatin three-dimensional architecture data. Lung cancers possessed a similar mutation burden at tissue-specific enhancers and exons but with differences in their mutation signatures. Functionally relevant alterations were prioritized on the basis of the pathway-level integration of the effect of a mutation and the frequency of mutations on individual enhancers. The genes enriched for mutated enhancers converged on the regulation of key biological processes and pathways relevant to tumor biology. Recurrent mutations in individual enhancers also affected the expression of target genes, with potential relevance for patient prognosis. Together, these findings show that noncoding regulatory mutations have a potential relevance for cancer pathogenesis and can be exploited for patient classification.
Significance: Mapping enhancer-target gene regulatory interactions and analyzing enhancer mutations at the level of their target genes and pathways reveal convergence of recurrent enhancer mutations on biological processes involved in tumorigenesis and prognosis.
{"title":"Leveraging Tissue-Specific Enhancer-Target Gene Regulatory Networks Identifies Enhancer Somatic Mutations That Functionally Impact Lung Cancer.","authors":"Judith Mary Hariprakash, Elisa Salviato, Federica La Mastra, Endre Sebestyén, Ilario Tagliaferri, Raquel Sofia Silva, Federica Lucini, Lorenzo Farina, Mario Cinquanta, Ilaria Rancati, Mirko Riboni, Simone Paolo Minardi, Luca Roz, Francesca Gorini, Chiara Lanzuolo, Stefano Casola, Francesco Ferrari","doi":"10.1158/0008-5472.CAN-23-1129","DOIUrl":"10.1158/0008-5472.CAN-23-1129","url":null,"abstract":"<p><p>Enhancers are noncoding regulatory DNA regions that modulate the transcription of target genes, often over large distances along with the genomic sequence. Enhancer alterations have been associated with various pathological conditions, including cancer. However, the identification and characterization of somatic mutations in noncoding regulatory regions with a functional effect on tumorigenesis and prognosis remain a major challenge. Here, we present a strategy for detecting and characterizing enhancer mutations in a genome-wide analysis of patient cohorts, across three lung cancer subtypes. Lung tissue-specific enhancers were defined by integrating experimental data and public epigenomic profiles, and the genome-wide enhancer-target gene regulatory network of lung cells was constructed by integrating chromatin three-dimensional architecture data. Lung cancers possessed a similar mutation burden at tissue-specific enhancers and exons but with differences in their mutation signatures. Functionally relevant alterations were prioritized on the basis of the pathway-level integration of the effect of a mutation and the frequency of mutations on individual enhancers. The genes enriched for mutated enhancers converged on the regulation of key biological processes and pathways relevant to tumor biology. Recurrent mutations in individual enhancers also affected the expression of target genes, with potential relevance for patient prognosis. Together, these findings show that noncoding regulatory mutations have a potential relevance for cancer pathogenesis and can be exploited for patient classification.</p><p><strong>Significance: </strong>Mapping enhancer-target gene regulatory interactions and analyzing enhancer mutations at the level of their target genes and pathways reveal convergence of recurrent enhancer mutations on biological processes involved in tumorigenesis and prognosis.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"133-153"},"PeriodicalIF":11.2,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758689/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49674593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}