CAR T Cells Engineered to Secrete IFNκ Induce Tumor Ferroptosis via an IFNAR/STAT1/ACSL4 Axis.

IF 8.1 1区 医学 Q1 IMMUNOLOGY Cancer immunology research Pub Date : 2024-12-03 DOI:10.1158/2326-6066.CIR-24-0130
Yaoxin Gao, Shasha Liu, Yifan Huang, Hui Wang, Yuyu Zhao, Xuyang Cui, Yajing Peng, Feng Li, Yi Zhang
{"title":"CAR T Cells Engineered to Secrete IFNκ Induce Tumor Ferroptosis via an IFNAR/STAT1/ACSL4 Axis.","authors":"Yaoxin Gao, Shasha Liu, Yifan Huang, Hui Wang, Yuyu Zhao, Xuyang Cui, Yajing Peng, Feng Li, Yi Zhang","doi":"10.1158/2326-6066.CIR-24-0130","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is an iron-dependent form of cell death that influences cancer immunity. Therapeutic modulation of ferroptosis is considered a potential strategy to enhance the efficacy of other cancer therapies, including immunotherapies such as chimeric antigen receptor (CAR) T-cell therapy. In this study, we demonstrated that IFNκ influenced the induction of ferroptosis. IFNκ could enhance the sensitivity of tumor cells to ferroptosis induced by the small molecule compound erastin and the polyunsaturated fatty acid arachidonic acid. Mechanistically, IFNκ in combination with arachidonic acid induced immunogenic tumor ferroptosis via an IFNAR/STAT1/ACSL4 axis. Moreover, CAR T cells engineered to express IFNκ showed increased antitumor efficiency against H460 cells (antigen positive) and H322 cells (antigen-negative) both in vitro and in vivo. We conclude that IFNκ is a potential cytokine that could be harnessed to enhance the antitumor function of CAR T cells by inducing tumor ferroptosis.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1691-1702"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612617/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0130","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis is an iron-dependent form of cell death that influences cancer immunity. Therapeutic modulation of ferroptosis is considered a potential strategy to enhance the efficacy of other cancer therapies, including immunotherapies such as chimeric antigen receptor (CAR) T-cell therapy. In this study, we demonstrated that IFNκ influenced the induction of ferroptosis. IFNκ could enhance the sensitivity of tumor cells to ferroptosis induced by the small molecule compound erastin and the polyunsaturated fatty acid arachidonic acid. Mechanistically, IFNκ in combination with arachidonic acid induced immunogenic tumor ferroptosis via an IFNAR/STAT1/ACSL4 axis. Moreover, CAR T cells engineered to express IFNκ showed increased antitumor efficiency against H460 cells (antigen positive) and H322 cells (antigen-negative) both in vitro and in vivo. We conclude that IFNκ is a potential cytokine that could be harnessed to enhance the antitumor function of CAR T cells by inducing tumor ferroptosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经改造可分泌 IFN-κ 的 CAR T 细胞通过 IFNAR/STAT1/ACSL4 轴诱导肿瘤铁变态反应。
铁突变是一种影响癌症免疫的铁依赖性细胞死亡形式。对铁凋亡的治疗调节被认为是提高其他癌症疗法疗效的一种潜在策略,包括嵌合抗原受体(CAR)T细胞疗法等免疫疗法。在这项研究中,我们证明了 IFN-κ 对铁卟啉诱导的影响。IFN-κ能增强肿瘤细胞对小分子化合物麦拉宁和多不饱和脂肪酸花生四烯酸诱导的铁变态反应的敏感性。从机理上讲,IFN-κ与花生四烯酸结合可通过IFNAR/STAT1/ACSL4轴诱导免疫原性肿瘤铁中毒。此外,表达 IFN-κ 的 CAR T 细胞在体外和体内对 H460 细胞(抗原阳性)和 H322 细胞(抗原阴性)的抗肿瘤效率都有所提高。我们的结论是,IFN-κ是一种潜在的细胞因子,可以通过诱导肿瘤铁变态反应来增强CAR T细胞的抗肿瘤功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
期刊最新文献
PKCδ germline variants and genetic deletion in mice augment antitumor immunity through regulation of myeloid cells. In situ detection of individual classical MHC-I gene products in cancer. Deleting Trim33 in Myeloid Cells Improves the Efficiency of Radiotherapy through an IFNβ-Dependent Antitumor Immune Response. Complement Factor H Is an ICOS Ligand Modulating Tregs in the Glioma Microenvironment. Level of Expression of MHCI-Presented Neoepitopes Influences Tumor Rejection by Neoantigen-Specific CD8+ T Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1