Claire Bordoli, Ian Varley, Graham R Sharpe, Michael A Johnson, Philip J Hennis
{"title":"Effects of Oral Lactate Supplementation on Acid-Base Balance and Prolonged High-Intensity Interval Cycling Performance.","authors":"Claire Bordoli, Ian Varley, Graham R Sharpe, Michael A Johnson, Philip J Hennis","doi":"10.3390/jfmk9030139","DOIUrl":null,"url":null,"abstract":"<p><p>Lactate is an important energy intermediate and metabolic buffer, and may be ergogenic. We investigated if lactate supplementation is an effective approach to enhance the exercise performance and acid-base balance of trained cyclists during exercise devised to simulate the demands of endurance road race cycling. Sixteen endurance-trained male cyclists (V·O<sub>2max</sub> 59 ± 7 mL·kg<sup>-1</sup>·min<sup>-1</sup>) consumed 120 mg·kg<sup>-1</sup> body mass of lactate or a placebo 70 min prior to performing an exercise performance test, comprising five repeated blocks consisting of 1 km and 4 km time trials interspersed with 10 min of moderate-intensity exercise. Blood acid-base balance (including [H<sup>+</sup>] and [HCO<sub>3</sub><sup>-</sup>]), heart rate, perceived exertion, and gastro-intestinal tolerance were assessed. There was no effect of lactate supplementation on exercise performance (<i>p</i> = 0.320), despite a reduction in RPE (<i>p</i> = 0.012) and increases in [SID] (<i>p</i> = 0.026) and [HCO<sub>3</sub><sup>-</sup>] (<i>p</i> = 0.041). In addition, gastro-intestinal side effects were observed, but there was no effect on heart rate. Lactate supplementation did not improve exercise performance, despite positive changes in acid-base balance and RPE. This suggests that the alkalising effects of the supplement can reduce perceived effort, but these benefits do not translate into performance improvements.</p>","PeriodicalId":16052,"journal":{"name":"Journal of Functional Morphology and Kinesiology","volume":"9 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348031/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Morphology and Kinesiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jfmk9030139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lactate is an important energy intermediate and metabolic buffer, and may be ergogenic. We investigated if lactate supplementation is an effective approach to enhance the exercise performance and acid-base balance of trained cyclists during exercise devised to simulate the demands of endurance road race cycling. Sixteen endurance-trained male cyclists (V·O2max 59 ± 7 mL·kg-1·min-1) consumed 120 mg·kg-1 body mass of lactate or a placebo 70 min prior to performing an exercise performance test, comprising five repeated blocks consisting of 1 km and 4 km time trials interspersed with 10 min of moderate-intensity exercise. Blood acid-base balance (including [H+] and [HCO3-]), heart rate, perceived exertion, and gastro-intestinal tolerance were assessed. There was no effect of lactate supplementation on exercise performance (p = 0.320), despite a reduction in RPE (p = 0.012) and increases in [SID] (p = 0.026) and [HCO3-] (p = 0.041). In addition, gastro-intestinal side effects were observed, but there was no effect on heart rate. Lactate supplementation did not improve exercise performance, despite positive changes in acid-base balance and RPE. This suggests that the alkalising effects of the supplement can reduce perceived effort, but these benefits do not translate into performance improvements.