Haibo Liu, Kai Hu, Kevin O'Connor, Michelle A Kelliher, Lihua Julie Zhu
{"title":"CleanUpRNAseq: An R/Bioconductor Package for Detecting and Correcting DNA Contamination in RNA-Seq Data.","authors":"Haibo Liu, Kai Hu, Kevin O'Connor, Michelle A Kelliher, Lihua Julie Zhu","doi":"10.3390/biotech13030030","DOIUrl":null,"url":null,"abstract":"<p><p>RNA sequencing (RNA-seq) has become a standard method for profiling gene expression, yet genomic DNA (gDNA) contamination carried over to the sequencing library poses a significant challenge to data integrity. Detecting and correcting this contamination is vital for accurate downstream analyses. Particularly, when RNA samples are scarce and invaluable, it becomes essential not only to identify but also to correct gDNA contamination to maximize the data's utility. However, existing tools capable of correcting gDNA contamination are limited and lack thorough evaluation. To fill the gap, we developed CleanUpRNAseq, which offers a comprehensive set of functionalities for identifying and correcting gDNA-contaminated RNA-seq data. Our package offers three correction methods for unstranded RNA-seq data and a dedicated approach for stranded data. Through rigorous validation on published RNA-seq datasets with known levels of gDNA contamination and real-world RNA-seq data, we demonstrate CleanUpRNAseq's efficacy in detecting and correcting detrimental levels of gDNA contamination across diverse library protocols. CleanUpRNAseq thus serves as a valuable tool for post-alignment quality assessment of RNA-seq data and should be integrated into routine workflows for RNA-seq data analysis. Its incorporation into OneStopRNAseq should significantly bolster the accuracy of gene expression quantification and differential expression analysis of RNA-seq data.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech13030030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA sequencing (RNA-seq) has become a standard method for profiling gene expression, yet genomic DNA (gDNA) contamination carried over to the sequencing library poses a significant challenge to data integrity. Detecting and correcting this contamination is vital for accurate downstream analyses. Particularly, when RNA samples are scarce and invaluable, it becomes essential not only to identify but also to correct gDNA contamination to maximize the data's utility. However, existing tools capable of correcting gDNA contamination are limited and lack thorough evaluation. To fill the gap, we developed CleanUpRNAseq, which offers a comprehensive set of functionalities for identifying and correcting gDNA-contaminated RNA-seq data. Our package offers three correction methods for unstranded RNA-seq data and a dedicated approach for stranded data. Through rigorous validation on published RNA-seq datasets with known levels of gDNA contamination and real-world RNA-seq data, we demonstrate CleanUpRNAseq's efficacy in detecting and correcting detrimental levels of gDNA contamination across diverse library protocols. CleanUpRNAseq thus serves as a valuable tool for post-alignment quality assessment of RNA-seq data and should be integrated into routine workflows for RNA-seq data analysis. Its incorporation into OneStopRNAseq should significantly bolster the accuracy of gene expression quantification and differential expression analysis of RNA-seq data.