A machine learning enhanced EMS mutagenesis probability map for efficient identification of causal mutations in Caenorhabditis elegans.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY PLoS Genetics Pub Date : 2024-08-26 eCollection Date: 2024-08-01 DOI:10.1371/journal.pgen.1011377
Zhengyang Guo, Shimin Wang, Yang Wang, Zi Wang, Guangshuo Ou
{"title":"A machine learning enhanced EMS mutagenesis probability map for efficient identification of causal mutations in Caenorhabditis elegans.","authors":"Zhengyang Guo, Shimin Wang, Yang Wang, Zi Wang, Guangshuo Ou","doi":"10.1371/journal.pgen.1011377","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical mutagenesis-driven forward genetic screens are pivotal in unveiling gene functions, yet identifying causal mutations behind phenotypes remains laborious, hindering their high-throughput application. Here, we reveal a non-uniform mutation rate caused by Ethyl Methane Sulfonate (EMS) mutagenesis in the C. elegans genome, indicating that mutation frequency is influenced by proximate sequence context and chromatin status. Leveraging these factors, we developed a machine learning enhanced pipeline to create a comprehensive EMS mutagenesis probability map for the C. elegans genome. This map operates on the principle that causative mutations are enriched in genetic screens targeting specific phenotypes among random mutations. Applying this map to Whole Genome Sequencing (WGS) data of genetic suppressors that rescue a C. elegans ciliary kinesin mutant, we successfully pinpointed causal mutations without generating recombinant inbred lines. This method can be adapted in other species, offering a scalable approach for identifying causal genes and revitalizing the effectiveness of forward genetic screens.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 8","pages":"e1011377"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011377","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical mutagenesis-driven forward genetic screens are pivotal in unveiling gene functions, yet identifying causal mutations behind phenotypes remains laborious, hindering their high-throughput application. Here, we reveal a non-uniform mutation rate caused by Ethyl Methane Sulfonate (EMS) mutagenesis in the C. elegans genome, indicating that mutation frequency is influenced by proximate sequence context and chromatin status. Leveraging these factors, we developed a machine learning enhanced pipeline to create a comprehensive EMS mutagenesis probability map for the C. elegans genome. This map operates on the principle that causative mutations are enriched in genetic screens targeting specific phenotypes among random mutations. Applying this map to Whole Genome Sequencing (WGS) data of genetic suppressors that rescue a C. elegans ciliary kinesin mutant, we successfully pinpointed causal mutations without generating recombinant inbred lines. This method can be adapted in other species, offering a scalable approach for identifying causal genes and revitalizing the effectiveness of forward genetic screens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习增强型 EMS 诱变概率图,用于高效识别秀丽隐杆线虫的因果突变。
化学诱变驱动的正向遗传筛选在揭示基因功能方面起着关键作用,但识别表型背后的因果突变仍很费力,阻碍了其高通量应用。在这里,我们揭示了甲烷磺酸乙酯(EMS)诱变在优雅子基因组中引起的非均匀突变率,表明突变频率受到近似序列上下文和染色质状态的影响。利用这些因素,我们开发了一个机器学习增强型管道,为 elegans 基因组创建了一个全面的 EMS 诱变概率图谱。该图谱的运行原理是,在针对特定表型的基因筛选中,随机突变会富集致病突变。我们将该图谱应用于拯救秀丽隐杆线虫纤毛驱动蛋白突变体的遗传抑制因子的全基因组测序(WGS)数据,在不产生重组近交系的情况下成功地确定了致病突变。这种方法可以应用于其他物种,为确定因果基因提供了一种可扩展的方法,并振兴了前向遗传筛选的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
期刊最新文献
A high-resolution haplotype collection uncovers somatic hybridization, recombination and intercontinental movement in oat crown rust. Protein phosphatase 1 catalytic subunit gamma is a causative gene for meat lightness and redness. A novel statistical framework for meta-analysis of total mediation effect with high-dimensional omics mediators in large-scale genomic consortia. Cell non-autonomous signaling through the conserved C. elegans glycoprotein hormone receptor FSHR-1 regulates cholinergic neurotransmission. Neuronal fatty acid-binding protein enhances autophagy and suppresses amyloid-β pathology in a Drosophila model of Alzheimer's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1