Pub Date : 2025-03-20eCollection Date: 2025-03-01DOI: 10.1371/journal.pgen.1011613
Christian Meyer, Achim Paululat
Blood flow in metazoans is regulated by the activity of the heart. The open circulatory system of insects consists of relatively few structural elements that determine cardiac performance via their coordinated interplay. One of these elements is the intracardiac valve between the aorta and the ventricle. In Drosophila, it is built by only two cells, whose unique histology represents an evolutionary novelty. While the development and differentiation of these highly specialised cells have been elucidated previously, their physiological impact on heart performance is still unsolved. The present study investigated the physiological consequences of cardiac valve malformation in Drosophila. We show that cardiac performance is reduced if valves are malformed or damaged. Less blood is transported through the heart proper, resulting in a decreased overall transport capacity. A reduced luminal opening was identified as a main reason for the decreased heart performance in the absence of functional valves. Intracardiac hemolymph flow was visualised at the valve region by microparticle injection and revealed characteristic similarities to valve blood flow in vertebrates. Based on our data, we propose a model on how the Drosophila intracardiac valves support proper hemolymph flow and distribution, thereby optimising general heart performance.
{"title":"Valve cells are crucial for efficient cardiac performance in Drosophila.","authors":"Christian Meyer, Achim Paululat","doi":"10.1371/journal.pgen.1011613","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011613","url":null,"abstract":"<p><p>Blood flow in metazoans is regulated by the activity of the heart. The open circulatory system of insects consists of relatively few structural elements that determine cardiac performance via their coordinated interplay. One of these elements is the intracardiac valve between the aorta and the ventricle. In Drosophila, it is built by only two cells, whose unique histology represents an evolutionary novelty. While the development and differentiation of these highly specialised cells have been elucidated previously, their physiological impact on heart performance is still unsolved. The present study investigated the physiological consequences of cardiac valve malformation in Drosophila. We show that cardiac performance is reduced if valves are malformed or damaged. Less blood is transported through the heart proper, resulting in a decreased overall transport capacity. A reduced luminal opening was identified as a main reason for the decreased heart performance in the absence of functional valves. Intracardiac hemolymph flow was visualised at the valve region by microparticle injection and revealed characteristic similarities to valve blood flow in vertebrates. Based on our data, we propose a model on how the Drosophila intracardiac valves support proper hemolymph flow and distribution, thereby optimising general heart performance.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011613"},"PeriodicalIF":4.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143671662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-20eCollection Date: 2025-03-01DOI: 10.1371/journal.pgen.1011593
Thomas Sonntag, Shizue Omi, Antonina Andreeva, Claire Valotteau, Jeanne Eichelbrenner, Andrew D Chisholm, Jordan D Ward, Nathalie Pujol
Apical extracellular matrices (aECMs) act as crucial barriers, and communicate with the epidermis to trigger protective responses following injury or infection. In Caenorhabditis elegans, the skin aECM, the cuticle, is produced by the epidermis and is decorated with periodic circumferential furrows. We previously showed that mutants lacking cuticle furrows exhibit persistent immune activation (PIA), providing a valuable model to study the link between cuticle damage and immune response. In a genetic suppressor screen, we identified spia-1 as a key gene downstream of furrow collagens and upstream of immune signalling. spia-1 expression oscillates during larval development, peaking between each moult together with patterning cuticular components. It encodes a secreted protein that localises to furrows. SPIA-1 shares a novel cysteine-cradle domain with other aECM proteins. SPIA-1 mediates immune activation in response to furrow loss and is proposed to act as an extracellular signal activator of cuticle damage. This research provides a molecular insight into intricate interplay between cuticle integrity and epidermal immune activation in C. elegans.
{"title":"A defining member of the new cysteine-cradle family is an aECM protein signalling skin damage in C. elegans.","authors":"Thomas Sonntag, Shizue Omi, Antonina Andreeva, Claire Valotteau, Jeanne Eichelbrenner, Andrew D Chisholm, Jordan D Ward, Nathalie Pujol","doi":"10.1371/journal.pgen.1011593","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011593","url":null,"abstract":"<p><p>Apical extracellular matrices (aECMs) act as crucial barriers, and communicate with the epidermis to trigger protective responses following injury or infection. In Caenorhabditis elegans, the skin aECM, the cuticle, is produced by the epidermis and is decorated with periodic circumferential furrows. We previously showed that mutants lacking cuticle furrows exhibit persistent immune activation (PIA), providing a valuable model to study the link between cuticle damage and immune response. In a genetic suppressor screen, we identified spia-1 as a key gene downstream of furrow collagens and upstream of immune signalling. spia-1 expression oscillates during larval development, peaking between each moult together with patterning cuticular components. It encodes a secreted protein that localises to furrows. SPIA-1 shares a novel cysteine-cradle domain with other aECM proteins. SPIA-1 mediates immune activation in response to furrow loss and is proposed to act as an extracellular signal activator of cuticle damage. This research provides a molecular insight into intricate interplay between cuticle integrity and epidermal immune activation in C. elegans.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011593"},"PeriodicalIF":4.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143671659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deep learning techniques are increasingly utilized to analyze large-scale single-cell RNA sequencing (scRNA-seq) data, offering valuable insights from complex transcriptome datasets. Geneformer, a pre-trained model using a Transformer Encoder architecture and human scRNA-seq datasets, has demonstrated remarkable success in human transcriptome analysis. However, given the prominence of the mouse, Mus musculus, as a primary mammalian model in biological and medical research, there is an acute need for a mouse-specific version of Geneformer. In this study, we developed a mouse-specific Geneformer (mouse-Geneformer) by constructing a large transcriptome dataset consisting of 21 million mouse scRNA-seq profiles and pre-training Geneformer on this dataset. The mouse-Geneformer effectively models the mouse transcriptome and, upon fine-tuning for downstream tasks, enhances the accuracy of cell type classification. In silico perturbation experiments using mouse-Geneformer successfully identified disease-causing genes that have been validated in in vivo experiments. These results demonstrate the feasibility of analyzing mouse data with mouse-Geneformer and highlight the robustness of the Geneformer architecture, applicable to any species with large-scale transcriptome data available. Furthermore, we found that mouse-Geneformer can analyze human transcriptome data in a cross-species manner. After the ortholog-based gene name conversion, the analysis of human scRNA-seq data using mouse-Geneformer, followed by fine-tuning with human data, achieved cell type classification accuracy comparable to that obtained using the original human Geneformer. In in silico simulation experiments using human disease models, we obtained results similar to human-Geneformer for the myocardial infarction model but only partially consistent results for the COVID-19 model, a trait unique to humans (laboratory mice are not susceptible to SARS-CoV-2). These findings suggest the potential for cross-species application of the Geneformer model while emphasizing the importance of species-specific models for capturing the full complexity of disease mechanisms. Despite the existence of the original Geneformer tailored for humans, human research could benefit from mouse-Geneformer due to its inclusion of samples that are ethically or technically inaccessible for humans, such as embryonic tissues and certain disease models. Additionally, this cross-species approach indicates potential use for non-model organisms, where obtaining large-scale single-cell transcriptome data is challenging.
{"title":"Mouse-Geneformer: A deep learning model for mouse single-cell transcriptome and its cross-species utility.","authors":"Keita Ito, Tsubasa Hirakawa, Shuji Shigenobu, Hironobu Fujiyoshi, Takayoshi Yamashita","doi":"10.1371/journal.pgen.1011420","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011420","url":null,"abstract":"<p><p>Deep learning techniques are increasingly utilized to analyze large-scale single-cell RNA sequencing (scRNA-seq) data, offering valuable insights from complex transcriptome datasets. Geneformer, a pre-trained model using a Transformer Encoder architecture and human scRNA-seq datasets, has demonstrated remarkable success in human transcriptome analysis. However, given the prominence of the mouse, Mus musculus, as a primary mammalian model in biological and medical research, there is an acute need for a mouse-specific version of Geneformer. In this study, we developed a mouse-specific Geneformer (mouse-Geneformer) by constructing a large transcriptome dataset consisting of 21 million mouse scRNA-seq profiles and pre-training Geneformer on this dataset. The mouse-Geneformer effectively models the mouse transcriptome and, upon fine-tuning for downstream tasks, enhances the accuracy of cell type classification. In silico perturbation experiments using mouse-Geneformer successfully identified disease-causing genes that have been validated in in vivo experiments. These results demonstrate the feasibility of analyzing mouse data with mouse-Geneformer and highlight the robustness of the Geneformer architecture, applicable to any species with large-scale transcriptome data available. Furthermore, we found that mouse-Geneformer can analyze human transcriptome data in a cross-species manner. After the ortholog-based gene name conversion, the analysis of human scRNA-seq data using mouse-Geneformer, followed by fine-tuning with human data, achieved cell type classification accuracy comparable to that obtained using the original human Geneformer. In in silico simulation experiments using human disease models, we obtained results similar to human-Geneformer for the myocardial infarction model but only partially consistent results for the COVID-19 model, a trait unique to humans (laboratory mice are not susceptible to SARS-CoV-2). These findings suggest the potential for cross-species application of the Geneformer model while emphasizing the importance of species-specific models for capturing the full complexity of disease mechanisms. Despite the existence of the original Geneformer tailored for humans, human research could benefit from mouse-Geneformer due to its inclusion of samples that are ethically or technically inaccessible for humans, such as embryonic tissues and certain disease models. Additionally, this cross-species approach indicates potential use for non-model organisms, where obtaining large-scale single-cell transcriptome data is challenging.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011420"},"PeriodicalIF":4.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18eCollection Date: 2025-03-01DOI: 10.1371/journal.pgen.1011598
Daiqing Yin, Zhaomin Zhong, Fan Zeng, Zhikang Xu, Jing Li, Wenhua Ren, Guang Yang, Han Wang, Shixia Xu
To satisfy the needs of sleeping underwater, marine mammals, including cetaceans, sirenians, and pinnipeds, have evolved an unusual form of sleep, known as unihemispheric slow-wave sleep (USWS), in which one brain hemisphere is asleep while the other is awake. All aquatic cetaceans have only evolved USWS without rapid eye movement (REM) sleep, whereas aquatic sirenians and amphibious pinnipeds display both bihemispheric slow-wave sleep (BSWS) and USWS, as well as REM sleep. However, the molecular genetic changes underlying USWS remain unknown. The present study investigated the evolution of eight canonical circadian genes and found that positive selection occurred mainly within cetacean lineages. Furthermore, convergent evolution was observed in lineages with USWS at three circadian clock genes. Remarkably, in vitro assays showed that cetacean-specific mutations increased the nuclear localization of zebrafish clocka, and enhanced the transcriptional activation activity of Clocka and Bmal1a. In vivo, transcriptome analysis showed that the overexpression of the cetacean-specific mutant clocka (clocka-mut) caused the upregulation of the wakefulness-promoting glutamatergic genes and the differential expression of multiple genes associated with sleep regulation. In contrast, the GABAergic and cholinergic pathways, which play important roles in promoting sleep, were downregulated in the bmal1a-mut-overexpressing zebrafish. Concordantly, sleep time of zebrafish overexpressing clocka-mut and bmal1a-mut were significantly less than the zebrafish overexpressing the wild-type genes, respectively. These findings support our hypothesis that canonical circadian clock genes may have evolved adaptively to enhance circadian regulation ability relating to sleep in cetaceans and, in turn, contribute to the formation of USWS.
{"title":"Evolution of canonical circadian clock genes underlies unique sleep strategies of marine mammals for secondary aquatic adaptation.","authors":"Daiqing Yin, Zhaomin Zhong, Fan Zeng, Zhikang Xu, Jing Li, Wenhua Ren, Guang Yang, Han Wang, Shixia Xu","doi":"10.1371/journal.pgen.1011598","DOIUrl":"10.1371/journal.pgen.1011598","url":null,"abstract":"<p><p>To satisfy the needs of sleeping underwater, marine mammals, including cetaceans, sirenians, and pinnipeds, have evolved an unusual form of sleep, known as unihemispheric slow-wave sleep (USWS), in which one brain hemisphere is asleep while the other is awake. All aquatic cetaceans have only evolved USWS without rapid eye movement (REM) sleep, whereas aquatic sirenians and amphibious pinnipeds display both bihemispheric slow-wave sleep (BSWS) and USWS, as well as REM sleep. However, the molecular genetic changes underlying USWS remain unknown. The present study investigated the evolution of eight canonical circadian genes and found that positive selection occurred mainly within cetacean lineages. Furthermore, convergent evolution was observed in lineages with USWS at three circadian clock genes. Remarkably, in vitro assays showed that cetacean-specific mutations increased the nuclear localization of zebrafish clocka, and enhanced the transcriptional activation activity of Clocka and Bmal1a. In vivo, transcriptome analysis showed that the overexpression of the cetacean-specific mutant clocka (clocka-mut) caused the upregulation of the wakefulness-promoting glutamatergic genes and the differential expression of multiple genes associated with sleep regulation. In contrast, the GABAergic and cholinergic pathways, which play important roles in promoting sleep, were downregulated in the bmal1a-mut-overexpressing zebrafish. Concordantly, sleep time of zebrafish overexpressing clocka-mut and bmal1a-mut were significantly less than the zebrafish overexpressing the wild-type genes, respectively. These findings support our hypothesis that canonical circadian clock genes may have evolved adaptively to enhance circadian regulation ability relating to sleep in cetaceans and, in turn, contribute to the formation of USWS.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011598"},"PeriodicalIF":4.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143659445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18eCollection Date: 2025-03-01DOI: 10.1371/journal.pgen.1011622
Limin Chen, Hui Yang, Juan Wang, Haoye Zhang, Kangkang Fu, Yu Yan, Zhenguo Liu
Background: Hepatic fibrosis may progress to liver cirrhosis and eventually cause death. Epithelial-mesenchymal transition (EMT) of hepatocytes plays critical roles in hepatic fibrosis. Exploring the mechanisms underlying EMT is crucial for a better understanding of hepatic fibrosis pathogenesis.
Methods: Hepatocyte EMT wad induced with TGF-β1 and evaluated by Western blotting and immunofluorescence staining. Methylated RNA immunoprecipitation (MeRIP) was applied to assess N6-methyladenosine (m6A) modification. RIP and RNA pull-down assays were performed to analyze the interaction between circABHD3, YTHDF2 and YPEL3 mRNA. MEOX1-mediated transcription of ABHD3 was examined by luciferase and chromatin immunoprecipitation (ChIP). Mice were intraperitoneally injected with CCl4 or treated with bile duct ligation (BDL) surgery for hepatic fibrosis induction. Liver injury and collagen deposition were examined with hematoxylin and eosin (HE), Masson, and Sirius Red staining. Alanine transaminase (ALT), aspartate transaminase (AST) and hydroxyproline (HYP) were examined using ELISA.
Results: CircABHD3 was upregulated in in vitro and in vivo models of hepatic fibrosis and patients. Knockdown of circABHD3 inhibited TGF-β1-induced expression of fibrosis markers, EMT and mitochondrial impairment in hepatocytes. MEOX1 could directly bind to the promoter of ABHD3 to facilitate its transcription and subsequent circABHD3 generation. Knockdown of MEOX1 suppressed TGF-β1-induced EMT and mitochondrial impairment through suppression of circABHD3. CircABHD3 destabilized YPEL3 mRNA via promoting YTHDF2-dependent recognition of m6A-modified YPEL3 mRNA to trigger β-catenin signaling activation. Furthermore, circABHD3 silencing-mediated inhibition of EMT and mitochondrial impairment was counteracted by YPEL3 knockdown and activation of β-catenin signaling. Depletion of circABHD3 significantly reduced EMT, mitochondrial impairment and hepatic fibrosis via promoting YPEL3 expression and suppressing β-catenin signaling in vivo.
Conclusion: MEOX1-mediated generation of circABHD3 promotes EMT and mitochondrial impairment by enhancing YTHDF2-mediated degradation of YPEL3 mRNA and activating downstream β-catenin signaling, thus exacerbating hepatic fibrosis.
{"title":"MEOX1-mediated transcriptional regulation of circABHD3 exacerbates hepatic fibrosis through promoting m6A/YTHDF2-dependent YPEL3 mRNA decay to activate β-catenin signaling.","authors":"Limin Chen, Hui Yang, Juan Wang, Haoye Zhang, Kangkang Fu, Yu Yan, Zhenguo Liu","doi":"10.1371/journal.pgen.1011622","DOIUrl":"10.1371/journal.pgen.1011622","url":null,"abstract":"<p><strong>Background: </strong>Hepatic fibrosis may progress to liver cirrhosis and eventually cause death. Epithelial-mesenchymal transition (EMT) of hepatocytes plays critical roles in hepatic fibrosis. Exploring the mechanisms underlying EMT is crucial for a better understanding of hepatic fibrosis pathogenesis.</p><p><strong>Methods: </strong>Hepatocyte EMT wad induced with TGF-β1 and evaluated by Western blotting and immunofluorescence staining. Methylated RNA immunoprecipitation (MeRIP) was applied to assess N6-methyladenosine (m6A) modification. RIP and RNA pull-down assays were performed to analyze the interaction between circABHD3, YTHDF2 and YPEL3 mRNA. MEOX1-mediated transcription of ABHD3 was examined by luciferase and chromatin immunoprecipitation (ChIP). Mice were intraperitoneally injected with CCl4 or treated with bile duct ligation (BDL) surgery for hepatic fibrosis induction. Liver injury and collagen deposition were examined with hematoxylin and eosin (HE), Masson, and Sirius Red staining. Alanine transaminase (ALT), aspartate transaminase (AST) and hydroxyproline (HYP) were examined using ELISA.</p><p><strong>Results: </strong>CircABHD3 was upregulated in in vitro and in vivo models of hepatic fibrosis and patients. Knockdown of circABHD3 inhibited TGF-β1-induced expression of fibrosis markers, EMT and mitochondrial impairment in hepatocytes. MEOX1 could directly bind to the promoter of ABHD3 to facilitate its transcription and subsequent circABHD3 generation. Knockdown of MEOX1 suppressed TGF-β1-induced EMT and mitochondrial impairment through suppression of circABHD3. CircABHD3 destabilized YPEL3 mRNA via promoting YTHDF2-dependent recognition of m6A-modified YPEL3 mRNA to trigger β-catenin signaling activation. Furthermore, circABHD3 silencing-mediated inhibition of EMT and mitochondrial impairment was counteracted by YPEL3 knockdown and activation of β-catenin signaling. Depletion of circABHD3 significantly reduced EMT, mitochondrial impairment and hepatic fibrosis via promoting YPEL3 expression and suppressing β-catenin signaling in vivo.</p><p><strong>Conclusion: </strong>MEOX1-mediated generation of circABHD3 promotes EMT and mitochondrial impairment by enhancing YTHDF2-mediated degradation of YPEL3 mRNA and activating downstream β-catenin signaling, thus exacerbating hepatic fibrosis.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011622"},"PeriodicalIF":4.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11918346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143659468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.1371/journal.pgen.1011632
Melissa A Tosiano, Frederick Lanni, Aaron P Mitchell, C Joel McManus
Hyphal growth is strongly associated with virulence in the human fungal pathogen Candida albicans. While hyphal transcriptional networks have been the subject of intense study, relatively little is known about post-transcriptional regulation. Previous work reported that P-Body (PB) factors Dhh1 and Edc3 were required for C. albicans virulence and filamentation, suggesting an essential role for post-transcriptional regulation of these processes. However, the molecular roles of these factors have not been determined. To further study the function of PB factors in filamentation, we generated homozygous deletions of DHH1 and EDC3 in diverse prototrophic clinical strains using transient CRISPR-Cas9. Homozygous DHH1 deletion strongly impaired growth, altered filamentation, and exhibited unusual colony morphology in response to heat stress in five strain backgrounds. Using RNA-seq, we found DHH1 deletion disrupts the regulation of thousands of genes under both yeast and hyphal growth conditions in SC5314 and P57055. This included upregulation of many stress response genes in the absence of external stress, similar to deletion of the S. cerevisiae DHH1 homolog. In contrast, we found EDC3 was not required for heat tolerance or filamentation in diverse strains. These results support a model in which DHH1, but not EDC3, represses hyphal stress response transcripts in yeast and remodels the transcriptome during filamentation. Our work supports distinct requirements for specific mRNA decay factors, bolstering evidence for post-transcriptional regulation of filamentation in C. albicans.
{"title":"Roles of P-body factors in Candida albicans filamentation and stress response.","authors":"Melissa A Tosiano, Frederick Lanni, Aaron P Mitchell, C Joel McManus","doi":"10.1371/journal.pgen.1011632","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011632","url":null,"abstract":"<p><p>Hyphal growth is strongly associated with virulence in the human fungal pathogen Candida albicans. While hyphal transcriptional networks have been the subject of intense study, relatively little is known about post-transcriptional regulation. Previous work reported that P-Body (PB) factors Dhh1 and Edc3 were required for C. albicans virulence and filamentation, suggesting an essential role for post-transcriptional regulation of these processes. However, the molecular roles of these factors have not been determined. To further study the function of PB factors in filamentation, we generated homozygous deletions of DHH1 and EDC3 in diverse prototrophic clinical strains using transient CRISPR-Cas9. Homozygous DHH1 deletion strongly impaired growth, altered filamentation, and exhibited unusual colony morphology in response to heat stress in five strain backgrounds. Using RNA-seq, we found DHH1 deletion disrupts the regulation of thousands of genes under both yeast and hyphal growth conditions in SC5314 and P57055. This included upregulation of many stress response genes in the absence of external stress, similar to deletion of the S. cerevisiae DHH1 homolog. In contrast, we found EDC3 was not required for heat tolerance or filamentation in diverse strains. These results support a model in which DHH1, but not EDC3, represses hyphal stress response transcripts in yeast and remodels the transcriptome during filamentation. Our work supports distinct requirements for specific mRNA decay factors, bolstering evidence for post-transcriptional regulation of filamentation in C. albicans.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011632"},"PeriodicalIF":4.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.1371/journal.pgen.1011614
EunBin Kong, Norbert Polacek
Recent studies expanded our knowledge of diverse pro-survival functions of short non-coding vault RNAs. One of the human vault RNA paralogs, vtRNA1-1, modulates several intracellular processes, including proliferation, apoptosis, autophagy, and drug resistance in various types of human cancer cells. However, protein interaction partners and mechanisms by which vtRNA1-1 levels are controlled within the cells remained elusive. Here, we describe a regulatory process for vtRNA1-1 stabilization mediated by the newly identified interacting proteins, TRIM21 and TRIM25, in human hepatocellular carcinoma (HCC) cells. Depleting TRIM21 or TRIM25 reduced the stability of vtRNA1-1 both in vivo and in vitro. We also identified the responsible sequence of vtRNA1-1 for the stability regulation by TRIM21 and TRIM25 and revealed another critical factor for vtRNA1-1 stability, an NSUN2-mediated methylation at C69 of vtRNA1-1. Consequently, our findings demonstrated that the TRIM proteins govern the stability of vtRNA1-1 depending on its methylation status in HCC cells. Since vtRNA1-1 is crucial for pro-survival characteristics in HCC cells, insight into vtRNA1-1 protein binding partners and the regulation of its stability can impact the development of new anticancer strategies.
{"title":"TRIM21 modulates stability of pro-survival non-coding RNA vtRNA1-1 in human hepatocellular carcinoma cells.","authors":"EunBin Kong, Norbert Polacek","doi":"10.1371/journal.pgen.1011614","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011614","url":null,"abstract":"<p><p>Recent studies expanded our knowledge of diverse pro-survival functions of short non-coding vault RNAs. One of the human vault RNA paralogs, vtRNA1-1, modulates several intracellular processes, including proliferation, apoptosis, autophagy, and drug resistance in various types of human cancer cells. However, protein interaction partners and mechanisms by which vtRNA1-1 levels are controlled within the cells remained elusive. Here, we describe a regulatory process for vtRNA1-1 stabilization mediated by the newly identified interacting proteins, TRIM21 and TRIM25, in human hepatocellular carcinoma (HCC) cells. Depleting TRIM21 or TRIM25 reduced the stability of vtRNA1-1 both in vivo and in vitro. We also identified the responsible sequence of vtRNA1-1 for the stability regulation by TRIM21 and TRIM25 and revealed another critical factor for vtRNA1-1 stability, an NSUN2-mediated methylation at C69 of vtRNA1-1. Consequently, our findings demonstrated that the TRIM proteins govern the stability of vtRNA1-1 depending on its methylation status in HCC cells. Since vtRNA1-1 is crucial for pro-survival characteristics in HCC cells, insight into vtRNA1-1 protein binding partners and the regulation of its stability can impact the development of new anticancer strategies.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011614"},"PeriodicalIF":4.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.1371/journal.pgen.1011631
Nicholas R Ray, Joseph Bradley, Elanur Yilmaz, Caghan Kizil, Jiji T Kurup, Eden R Martin, Hans-Ulrich Klein, Brian W Kunkle, David A Bennett, Philip L De Jager, Gary W Beecham, Carlos Cruchaga, Christiane Reitz
The genetic component of early-onset Alzheimer disease (EOAD), accounting for ~10% of all Alzheimer's disease (AD) cases, is largely unexplained. Recent studies suggest that EOAD may be enriched for variants acting in the lipid pathway. The current study examines the shared genetic heritability between EOAD and the lipid pathway using genome-wide multi-trait genetic covariance analyses. Summary statistics were obtained from the GWAS meta-analyses of EOAD by the Alzheimer's Disease Genetics Consortium (n=19,668) and five blood lipid traits by the Global Lipids Genetics Consortium (n=1,320,016). The significant results were compared between the EOAD and lipids GWAS and genetic covariance analyses were performed via SUPERGNOVA. Genes in linkage disequilibrium (LD) with top EOAD hits in identified regions of covariance with lipid traits were scored and ranked for causality by combining evidence from gene-based analysis, AD-risk scores incorporating transcriptomic and proteomic evidence, eQTL data, eQTL colocalization analyses, DNA methylation data, and single-cell RNA sequencing analyses. Direct comparison of GWAS results showed 5 loci overlapping between EOAD and at least one lipid trait harboring APOE, TREM2, MS4A4E, LILRA5, and LRRC25. Local genetic covariance analyses identified 3 regions of covariance between EOAD and at least one lipid trait. Gene prioritization nominated 3 likely causative genes at these loci: ANKDD1B, CUZD1, and MS4A64.The current study identified genetic covariance between EOAD and lipids, providing further evidence of shared genetic architecture and mechanistic pathways between the two traits.
{"title":"Local genetic covariance analysis with lipid traits identifies novel loci for early-onset Alzheimer's Disease.","authors":"Nicholas R Ray, Joseph Bradley, Elanur Yilmaz, Caghan Kizil, Jiji T Kurup, Eden R Martin, Hans-Ulrich Klein, Brian W Kunkle, David A Bennett, Philip L De Jager, Gary W Beecham, Carlos Cruchaga, Christiane Reitz","doi":"10.1371/journal.pgen.1011631","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011631","url":null,"abstract":"<p><p>The genetic component of early-onset Alzheimer disease (EOAD), accounting for ~10% of all Alzheimer's disease (AD) cases, is largely unexplained. Recent studies suggest that EOAD may be enriched for variants acting in the lipid pathway. The current study examines the shared genetic heritability between EOAD and the lipid pathway using genome-wide multi-trait genetic covariance analyses. Summary statistics were obtained from the GWAS meta-analyses of EOAD by the Alzheimer's Disease Genetics Consortium (n=19,668) and five blood lipid traits by the Global Lipids Genetics Consortium (n=1,320,016). The significant results were compared between the EOAD and lipids GWAS and genetic covariance analyses were performed via SUPERGNOVA. Genes in linkage disequilibrium (LD) with top EOAD hits in identified regions of covariance with lipid traits were scored and ranked for causality by combining evidence from gene-based analysis, AD-risk scores incorporating transcriptomic and proteomic evidence, eQTL data, eQTL colocalization analyses, DNA methylation data, and single-cell RNA sequencing analyses. Direct comparison of GWAS results showed 5 loci overlapping between EOAD and at least one lipid trait harboring APOE, TREM2, MS4A4E, LILRA5, and LRRC25. Local genetic covariance analyses identified 3 regions of covariance between EOAD and at least one lipid trait. Gene prioritization nominated 3 likely causative genes at these loci: ANKDD1B, CUZD1, and MS4A64.The current study identified genetic covariance between EOAD and lipids, providing further evidence of shared genetic architecture and mechanistic pathways between the two traits.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011631"},"PeriodicalIF":4.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.1371/journal.pgen.1011457
Katherine C Lo, Christian P Petersen
Proper stem cell targeting and differentiation is necessary for regeneration to succeed. In organisms capable of whole body regeneration, considerable progress has been made identifying wound signals initiating this process, but the mechanisms that control the differentiation of progenitors into mature organs are not fully understood. Using the planarian as a model system, we identify a novel function for map3k1, a MAP3K family member possessing both kinase and ubiquitin ligase domains, to negatively regulate terminal differentiation of stem cells during eye regeneration. Inhibition of map3k1 caused the formation of multiple ectopic eyes within the head, but without controlling overall head, brain, or body patterning. By contrast, other known regulators of planarian eye patterning like wnt11-6/wntA and notum also regulate head regionalization, suggesting map3k1 acts distinctly. Consistent with these results, eye resection and regeneration experiments suggest that unlike Wnt signaling perturbation, map3k1 inhibition did not shift the target destination of eye formation in the animal. map3k1(RNAi) ectopic eyes emerged in the regions normally occupied by migratory eye progenitors, and these animals produced a net excess of differentiated eye cells. Furthermore, the formation of ectopic eyes after map3k1 inhibition coincided with an increase to numbers of differentiated eye cells, a decrease in numbers of ovo+ eye progenitors, and also was preceded by eye progenitors prematurely expressing opsin/tyosinase markers of eye cell terminal differentiation. Therefore, map3k1 negatively regulates the process of terminal differentiation within the eye lineage. Similar ectopic eye phenotypes were also observed after inhibition of map2k4, map2k7, jnk, and p38, identifying a putative pathway through which map3k1 prevents differentiation. Together, these results suggest that map3k1 regulates a novel control point in the eye regeneration pathway which suppresses the terminal differentiation of progenitors during their migration to target destinations.
{"title":"map3k1 suppresses terminal differentiation of migratory eye progenitors in planarian regeneration.","authors":"Katherine C Lo, Christian P Petersen","doi":"10.1371/journal.pgen.1011457","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011457","url":null,"abstract":"<p><p>Proper stem cell targeting and differentiation is necessary for regeneration to succeed. In organisms capable of whole body regeneration, considerable progress has been made identifying wound signals initiating this process, but the mechanisms that control the differentiation of progenitors into mature organs are not fully understood. Using the planarian as a model system, we identify a novel function for map3k1, a MAP3K family member possessing both kinase and ubiquitin ligase domains, to negatively regulate terminal differentiation of stem cells during eye regeneration. Inhibition of map3k1 caused the formation of multiple ectopic eyes within the head, but without controlling overall head, brain, or body patterning. By contrast, other known regulators of planarian eye patterning like wnt11-6/wntA and notum also regulate head regionalization, suggesting map3k1 acts distinctly. Consistent with these results, eye resection and regeneration experiments suggest that unlike Wnt signaling perturbation, map3k1 inhibition did not shift the target destination of eye formation in the animal. map3k1(RNAi) ectopic eyes emerged in the regions normally occupied by migratory eye progenitors, and these animals produced a net excess of differentiated eye cells. Furthermore, the formation of ectopic eyes after map3k1 inhibition coincided with an increase to numbers of differentiated eye cells, a decrease in numbers of ovo+ eye progenitors, and also was preceded by eye progenitors prematurely expressing opsin/tyosinase markers of eye cell terminal differentiation. Therefore, map3k1 negatively regulates the process of terminal differentiation within the eye lineage. Similar ectopic eye phenotypes were also observed after inhibition of map2k4, map2k7, jnk, and p38, identifying a putative pathway through which map3k1 prevents differentiation. Together, these results suggest that map3k1 regulates a novel control point in the eye regeneration pathway which suppresses the terminal differentiation of progenitors during their migration to target destinations.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011457"},"PeriodicalIF":4.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.1371/journal.pgen.1011618
Sandra Amandine Marie Geslain, Stéphane Hausmann, Johan Geiser, George Edward Allen, Diego Gonzalez, Martina Valentini
The RNA degradosome is a bacterial multi-protein complex mediating mRNA processing and degradation. In Pseudomonadota, this complex assembles on the C-terminal domain (CTD) of RNase E through short linear motifs (SLiMs) that determine its composition and functionality. In the human pathogen Pseudomonas aeruginosa, the RNase E CTD exhibits limited similarity to that of model organisms, impeding our understanding of RNA metabolic processes in this bacterium. Our study systematically maps the interactions mediated by the P. aeruginosa RNase E CTD and highlights its critical role in transcript regulation and cellular functions. We identified the SLiMs crucial for membrane attachment, RNA binding and complex clustering, as well as for direct binding to the core components PNPase and RhlB. Transcriptome analyses of RNase E CTD mutants revealed altered expression of genes involved in quorum sensing, type III secretion, and amino acid metabolism. Additionally, we show that the mutants are impaired in cold adaptation, pH response, and virulence in an infection model. Overall, this work establishes the essential role of the RNA degradosome in driving bacterial adaptability and pathogenicity.
{"title":"Critical functions and key interactions mediated by the RNase E scaffolding domain in Pseudomonas aeruginosa.","authors":"Sandra Amandine Marie Geslain, Stéphane Hausmann, Johan Geiser, George Edward Allen, Diego Gonzalez, Martina Valentini","doi":"10.1371/journal.pgen.1011618","DOIUrl":"https://doi.org/10.1371/journal.pgen.1011618","url":null,"abstract":"<p><p>The RNA degradosome is a bacterial multi-protein complex mediating mRNA processing and degradation. In Pseudomonadota, this complex assembles on the C-terminal domain (CTD) of RNase E through short linear motifs (SLiMs) that determine its composition and functionality. In the human pathogen Pseudomonas aeruginosa, the RNase E CTD exhibits limited similarity to that of model organisms, impeding our understanding of RNA metabolic processes in this bacterium. Our study systematically maps the interactions mediated by the P. aeruginosa RNase E CTD and highlights its critical role in transcript regulation and cellular functions. We identified the SLiMs crucial for membrane attachment, RNA binding and complex clustering, as well as for direct binding to the core components PNPase and RhlB. Transcriptome analyses of RNase E CTD mutants revealed altered expression of genes involved in quorum sensing, type III secretion, and amino acid metabolism. Additionally, we show that the mutants are impaired in cold adaptation, pH response, and virulence in an infection model. Overall, this work establishes the essential role of the RNA degradosome in driving bacterial adaptability and pathogenicity.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011618"},"PeriodicalIF":4.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}