A 3D Convolutional Neural Network Based on Non-enhanced Brain CT to Identify Patients with Brain Metastases.

Tony Felefly, Ziad Francis, Camille Roukoz, Georges Fares, Samir Achkar, Sandrine Yazbeck, Antoine Nasr, Manal Kordahi, Fares Azoury, Dolly Nehme Nasr, Elie Nasr, Georges Noël
{"title":"A 3D Convolutional Neural Network Based on Non-enhanced Brain CT to Identify Patients with Brain Metastases.","authors":"Tony Felefly, Ziad Francis, Camille Roukoz, Georges Fares, Samir Achkar, Sandrine Yazbeck, Antoine Nasr, Manal Kordahi, Fares Azoury, Dolly Nehme Nasr, Elie Nasr, Georges Noël","doi":"10.1007/s10278-024-01240-5","DOIUrl":null,"url":null,"abstract":"<p><p>Dedicated brain imaging for cancer patients is seldom recommended in the absence of symptoms. There is increasing availability of non-enhanced CT (NE-CT) of the brain, mainly owing to a wider utilization of Positron Emission Tomography-CT (PET-CT) in cancer staging. Brain metastases (BM) are often hard to diagnose on NE-CT. This work aims to develop a 3D Convolutional Neural Network (3D-CNN) based on brain NE-CT to distinguish patients with and without BM. We retrospectively included NE-CT scans for 100 patients with single or multiple BM and 100 patients without brain imaging abnormalities. Patients whose largest lesion was < 5 mm were excluded. The largest tumor was manually segmented on a matched contrast-enhanced T1 weighted Magnetic Resonance Imaging (MRI), and shape radiomics were extracted to determine the size and volume of the lesion. The brain was automatically segmented, and masked images were normalized and resampled. The dataset was split into training (70%) and validation (30%) sets. Multiple versions of a 3D-CNN were developed, and the best model was selected based on accuracy (ACC) on the validation set. The median largest tumor Maximum-3D-Diameter was 2.29 cm, and its median volume was 2.81 cc. Solitary BM were found in 27% of the patients, while 49% had > 5 BMs. The best model consisted of 4 convolutional layers with 3D average pooling layers, dropout layers of 50%, and a sigmoid activation function. Mean validation ACC was 0.983 (SD: 0.020) and mean area under receiver-operating characteristic curve was 0.983 (SD: 0.023). Sensitivity was 0.983 (SD: 0.020). We developed an accurate 3D-CNN based on brain NE-CT to differentiate between patients with and without BM. The model merits further external validation.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01240-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dedicated brain imaging for cancer patients is seldom recommended in the absence of symptoms. There is increasing availability of non-enhanced CT (NE-CT) of the brain, mainly owing to a wider utilization of Positron Emission Tomography-CT (PET-CT) in cancer staging. Brain metastases (BM) are often hard to diagnose on NE-CT. This work aims to develop a 3D Convolutional Neural Network (3D-CNN) based on brain NE-CT to distinguish patients with and without BM. We retrospectively included NE-CT scans for 100 patients with single or multiple BM and 100 patients without brain imaging abnormalities. Patients whose largest lesion was < 5 mm were excluded. The largest tumor was manually segmented on a matched contrast-enhanced T1 weighted Magnetic Resonance Imaging (MRI), and shape radiomics were extracted to determine the size and volume of the lesion. The brain was automatically segmented, and masked images were normalized and resampled. The dataset was split into training (70%) and validation (30%) sets. Multiple versions of a 3D-CNN were developed, and the best model was selected based on accuracy (ACC) on the validation set. The median largest tumor Maximum-3D-Diameter was 2.29 cm, and its median volume was 2.81 cc. Solitary BM were found in 27% of the patients, while 49% had > 5 BMs. The best model consisted of 4 convolutional layers with 3D average pooling layers, dropout layers of 50%, and a sigmoid activation function. Mean validation ACC was 0.983 (SD: 0.020) and mean area under receiver-operating characteristic curve was 0.983 (SD: 0.023). Sensitivity was 0.983 (SD: 0.020). We developed an accurate 3D-CNN based on brain NE-CT to differentiate between patients with and without BM. The model merits further external validation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非增强脑CT的三维卷积神经网络识别脑转移患者
在没有症状的情况下,很少建议对癌症患者进行专门的脑部成像检查。主要由于正电子发射计算机断层扫描(PET-CT)在癌症分期中的广泛应用,脑部非增强 CT(NE-CT)的应用越来越广泛。脑转移(BM)通常很难通过 NE-CT 诊断出来。这项研究旨在开发一种基于脑 NE-CT 的三维卷积神经网络(3D-CNN),以区分有无脑转移瘤的患者。我们回顾性地纳入了 100 名单个或多个 BM 患者和 100 名无脑部成像异常患者的 NE-CT 扫描结果。最大病变为 5 个 BM 的患者。最佳模型由 4 个卷积层和 3D 平均池化层组成,剔除层为 50%,激活函数为 sigmoid。平均验证 ACC 为 0.983(标度:0.020),平均接收者工作特征曲线下面积为 0.983(标度:0.023)。灵敏度为 0.983(标准差:0.020)。我们开发了一种基于脑NE-CT的精确3D-CNN,用于区分BM患者和非BM患者。该模型值得进一步的外部验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual Energy CT for Deep Learning-Based Segmentation and Volumetric Estimation of Early Ischemic Infarcts. Empowering Women in Imaging Informatics: Confronting Imposter Syndrome, Addressing Microaggressions, and Striving for Work-Life Harmony. Deep Conformal Supervision: Leveraging Intermediate Features for Robust Uncertainty Quantification. Leveraging Ensemble Models and Follow-up Data for Accurate Prediction of mRS Scores from Radiomic Features of DSC-PWI Images. A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1