Leveraging Ensemble Models and Follow-up Data for Accurate Prediction of mRS Scores from Radiomic Features of DSC-PWI Images.

Mazen M Yassin, Asim Zaman, Jiaxi Lu, Huihui Yang, Anbo Cao, Haseeb Hassan, Taiyu Han, Xiaoqiang Miao, Yongkang Shi, Yingwei Guo, Yu Luo, Yan Kang
{"title":"Leveraging Ensemble Models and Follow-up Data for Accurate Prediction of mRS Scores from Radiomic Features of DSC-PWI Images.","authors":"Mazen M Yassin, Asim Zaman, Jiaxi Lu, Huihui Yang, Anbo Cao, Haseeb Hassan, Taiyu Han, Xiaoqiang Miao, Yongkang Shi, Yingwei Guo, Yu Luo, Yan Kang","doi":"10.1007/s10278-024-01280-x","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting long-term clinical outcomes based on the early DSC PWI MRI scan is valuable for prognostication, resource management, clinical trials, and patient expectations. Current methods require subjective decisions about which imaging features to assess and may require time-consuming postprocessing. This study's goal was to predict multilabel 90-day modified Rankin Scale (mRS) score in acute ischemic stroke patients by combining ensemble models and different configurations of radiomic features generated from Dynamic susceptibility contrast perfusion-weighted imaging. In Follow-up studies, a total of 70 acute ischemic stroke (AIS) patients underwent magnetic resonance imaging within 24 hours poststroke and had a follow-up scan. In the single study, 150 DSC PWI Image scans for AIS patients. The DRF are extracted from DSC-PWI Scans. Then Lasso algorithm is applied for feature selection, then new features are generated from initial and follow-up scans. Then we applied different ensemble models to classify between three classes normal outcome (0, 1 mRS score), moderate outcome (2,3,4 mRS score), and severe outcome (5,6 mRS score). ANOVA and post-hoc Tukey HSD tests confirmed significant differences in model style performance across various studies and classification techniques. Stacking models consistently on average outperformed others, achieving an Accuracy of 0.68 ± 0.15, Precision of 0.68 ± 0.17, Recall of 0.65 ± 0.14, and F1 score of 0.63 ± 0.15 in the follow-up time study. Techniques like Bo_Smote showed significantly higher recall and F1 scores, highlighting their robustness and effectiveness in handling imbalanced data. Ensemble models, particularly Bagging and Stacking, demonstrated superior performance, achieving nearly 0.93 in Accuracy, 0.95 in Precision, 0.94 in Recall, and 0.94 in F1 metrics in follow-up conditions, significantly outperforming single models. Ensemble models based on radiomics generated from combining Initial and follow-up scans can be used to predict multilabel 90-day stroke outcomes with reduced subjectivity and user burden.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01280-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting long-term clinical outcomes based on the early DSC PWI MRI scan is valuable for prognostication, resource management, clinical trials, and patient expectations. Current methods require subjective decisions about which imaging features to assess and may require time-consuming postprocessing. This study's goal was to predict multilabel 90-day modified Rankin Scale (mRS) score in acute ischemic stroke patients by combining ensemble models and different configurations of radiomic features generated from Dynamic susceptibility contrast perfusion-weighted imaging. In Follow-up studies, a total of 70 acute ischemic stroke (AIS) patients underwent magnetic resonance imaging within 24 hours poststroke and had a follow-up scan. In the single study, 150 DSC PWI Image scans for AIS patients. The DRF are extracted from DSC-PWI Scans. Then Lasso algorithm is applied for feature selection, then new features are generated from initial and follow-up scans. Then we applied different ensemble models to classify between three classes normal outcome (0, 1 mRS score), moderate outcome (2,3,4 mRS score), and severe outcome (5,6 mRS score). ANOVA and post-hoc Tukey HSD tests confirmed significant differences in model style performance across various studies and classification techniques. Stacking models consistently on average outperformed others, achieving an Accuracy of 0.68 ± 0.15, Precision of 0.68 ± 0.17, Recall of 0.65 ± 0.14, and F1 score of 0.63 ± 0.15 in the follow-up time study. Techniques like Bo_Smote showed significantly higher recall and F1 scores, highlighting their robustness and effectiveness in handling imbalanced data. Ensemble models, particularly Bagging and Stacking, demonstrated superior performance, achieving nearly 0.93 in Accuracy, 0.95 in Precision, 0.94 in Recall, and 0.94 in F1 metrics in follow-up conditions, significantly outperforming single models. Ensemble models based on radiomics generated from combining Initial and follow-up scans can be used to predict multilabel 90-day stroke outcomes with reduced subjectivity and user burden.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用集合模型和随访数据,从 DSC-PWI 图像的放射学特征准确预测 mRS 评分。
根据早期 DSC PWI MRI 扫描预测长期临床结果对预后、资源管理、临床试验和患者期望都很有价值。目前的方法需要主观决定评估哪些成像特征,而且可能需要耗时的后处理。本研究的目标是通过组合模型和动态感性对比灌注加权成像生成的不同放射学特征配置,预测急性缺血性脑卒中患者的多标签 90 天改良 Rankin 量表(mRS)评分。在随访研究中,共有 70 名急性缺血性中风(AIS)患者在中风后 24 小时内接受了磁共振成像,并进行了随访扫描。在单项研究中,为 AIS 患者进行了 150 次 DSC PWI 图像扫描。从 DSC-PWI 扫描图像中提取 DRF。然后应用 Lasso 算法进行特征选择,再从初始扫描和随访扫描中生成新特征。然后,我们应用不同的集合模型对正常结果(0、1 mRS 评分)、中度结果(2、3、4 mRS 评分)和重度结果(5、6 mRS 评分)进行分类。方差分析和事后 Tukey HSD 检验证实,不同研究和分类技术的模型风格性能存在显著差异。在随访时间研究中,堆叠模型的平均表现始终优于其他模型,准确率为 0.68 ± 0.15,精确率为 0.68 ± 0.17,召回率为 0.65 ± 0.14,F1 分数为 0.63 ± 0.15。Bo_Smote 等技术的召回率和 F1 分数明显更高,这突出表明了它们在处理不平衡数据时的稳健性和有效性。集合模型,特别是 Bagging 和 Stacking,表现出卓越的性能,在随访条件下的准确度接近 0.93,精确度接近 0.95,召回率接近 0.94,F1 指标接近 0.94,明显优于单一模型。基于结合初始扫描和随访扫描生成的放射组学的集合模型可用于预测多标签 90 天中风预后,同时减少主观性和用户负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual Energy CT for Deep Learning-Based Segmentation and Volumetric Estimation of Early Ischemic Infarcts. Empowering Women in Imaging Informatics: Confronting Imposter Syndrome, Addressing Microaggressions, and Striving for Work-Life Harmony. Deep Conformal Supervision: Leveraging Intermediate Features for Robust Uncertainty Quantification. Leveraging Ensemble Models and Follow-up Data for Accurate Prediction of mRS Scores from Radiomic Features of DSC-PWI Images. A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1