Connecting Protein Millisecond Conformational Dynamics to Protein Thermal Stability

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-08-14 DOI:10.1021/jacsau.4c0064910.1021/jacsau.4c00649
Xue-Ni Hou, Bin Song, Chang Zhao, Wen-Ting Chu, Mei-Xia Ruan, Xu Dong, Ling-Shen Meng, Zhou Gong, Yu-Xiang Weng, Jie Zheng*, Jin Wang* and Chun Tang*, 
{"title":"Connecting Protein Millisecond Conformational Dynamics to Protein Thermal Stability","authors":"Xue-Ni Hou,&nbsp;Bin Song,&nbsp;Chang Zhao,&nbsp;Wen-Ting Chu,&nbsp;Mei-Xia Ruan,&nbsp;Xu Dong,&nbsp;Ling-Shen Meng,&nbsp;Zhou Gong,&nbsp;Yu-Xiang Weng,&nbsp;Jie Zheng*,&nbsp;Jin Wang* and Chun Tang*,&nbsp;","doi":"10.1021/jacsau.4c0064910.1021/jacsau.4c00649","DOIUrl":null,"url":null,"abstract":"<p >The stability of protein folded states is crucial for its function, yet the relationship with the protein sequence remains poorly understood. Prior studies have focused on the amino acid composition and thermodynamic couplings within a single folded conformation, overlooking the potential contribution of protein dynamics. Here, we address this gap by systematically analyzing the impact of alanine mutations in the C-terminal β-strand (β5) of ubiquitin, a model protein exhibiting millisecond timescale interconversion between two conformational states differing in the β5 position. Our findings unveil a negative correlation between millisecond dynamics and thermal stability, with alanine substitutions at seemingly flexible C-terminal residues significantly enhancing thermostability. Integrating spectroscopic and computational approaches, we demonstrate that the thermally unfolded state retains a substantial secondary structure but lacks β5 engagement, recapitulating the transition state for millisecond dynamics. Thus, alanine mutations that modulate the stabilities of the folded states with respect to the partially unfolded state impact both the dynamics and stability. Our findings underscore the importance of conformational dynamics with implications for protein engineering and design.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00649","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The stability of protein folded states is crucial for its function, yet the relationship with the protein sequence remains poorly understood. Prior studies have focused on the amino acid composition and thermodynamic couplings within a single folded conformation, overlooking the potential contribution of protein dynamics. Here, we address this gap by systematically analyzing the impact of alanine mutations in the C-terminal β-strand (β5) of ubiquitin, a model protein exhibiting millisecond timescale interconversion between two conformational states differing in the β5 position. Our findings unveil a negative correlation between millisecond dynamics and thermal stability, with alanine substitutions at seemingly flexible C-terminal residues significantly enhancing thermostability. Integrating spectroscopic and computational approaches, we demonstrate that the thermally unfolded state retains a substantial secondary structure but lacks β5 engagement, recapitulating the transition state for millisecond dynamics. Thus, alanine mutations that modulate the stabilities of the folded states with respect to the partially unfolded state impact both the dynamics and stability. Our findings underscore the importance of conformational dynamics with implications for protein engineering and design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将蛋白质毫秒级构象动力学与蛋白质热稳定性联系起来
蛋白质折叠状态的稳定性对其功能至关重要,但人们对其与蛋白质序列的关系仍然知之甚少。之前的研究主要关注单一折叠构象中的氨基酸组成和热力学耦合,忽略了蛋白质动力学的潜在贡献。在这里,我们通过系统分析泛素 C 端 β 链(β5)丙氨酸突变的影响来填补这一空白,泛素是一种模型蛋白质,它在β5 位置不同的两种构象状态之间表现出毫秒级的相互转换。我们的发现揭示了毫秒级动力学与热稳定性之间的负相关关系,在看似灵活的 C 端残基上进行丙氨酸置换可显著提高热稳定性。结合光谱和计算方法,我们证明了热折叠状态保留了大量二级结构,但缺乏 β5 接合,再现了毫秒动力学的过渡状态。因此,丙氨酸突变可调节折叠状态相对于部分展开状态的稳定性,从而影响动力学和稳定性。我们的发现强调了构象动力学的重要性,对蛋白质工程和设计具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Announcing the Winner of the 2024 JACS Au Outstanding Paper Award Announcing the Winner of the 2024 JACS Au Outstanding Paper Award. Weak Base-Promoted Direct Cross-Coupling of Naphthalene-1,8-diaminato-substituted Arylboron Compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1