{"title":"Globalization of a telepathology network with artificial intelligence applications in Colombia: The GLORIA program study protocol","authors":"Andrés Mosquera-Zamudio , Marcela Gomez-Suarez , John Sprockel , Julian Camilo Riaño-Moreno , Emiel A.M. Janssen , Liron Pantanowitz , Rafael Parra-Medina","doi":"10.1016/j.jpi.2024.100394","DOIUrl":null,"url":null,"abstract":"<div><p>In Colombia, cancer is recognized as a high-cost pathology by the national government and the Colombian High-Cost Disease Fund. As of 2020, the situation is most critical for adult cancer patients, particularly those under public healthcare and residing in remote regions of the country. The highest lag time for a diagnosis was observed for cervical cancer (79.13 days), followed by prostate (77.30 days), and breast cancer (70.25 days). Timely and accurate histopathological reporting plays a vital role in the diagnosis of cancer. In recent years, digital pathology has been globally implemented as a technological tool in two main areas: telepathology (TP) and computational pathology. TP has been shown to improve rapid and timely diagnosis in anatomic pathology by facilitating interaction between general laboratories and specialized pathologists worldwide through information and telecommunication technologies. Computational pathology provides diagnostic and prognostic assistance based on histopathological patterns, molecular, and clinical information, aiding pathologists in making more accurate diagnoses. We present the study protocol of the GLORIA digital pathology network, a pioneering initiative, and national grant-approved program aiming to design and pilot a Colombian digital pathology transformation focused on TP and computational pathology, in response to the general needs of pathology laboratories for diagnosing complex malignant tumors. The study protocol describes the design of a TP network to expand oncopathology services across all Colombian regions. It also describes an artificial intelligence proposal for lung cancer, one of Colombia's most prevalent cancers, and a freely accessible national histopathological image database to facilitate image analysis studies.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"15 ","pages":"Article 100394"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2153353924000336/pdfft?md5=861e86fc08dee64d7bef49370be8286b&pid=1-s2.0-S2153353924000336-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353924000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
In Colombia, cancer is recognized as a high-cost pathology by the national government and the Colombian High-Cost Disease Fund. As of 2020, the situation is most critical for adult cancer patients, particularly those under public healthcare and residing in remote regions of the country. The highest lag time for a diagnosis was observed for cervical cancer (79.13 days), followed by prostate (77.30 days), and breast cancer (70.25 days). Timely and accurate histopathological reporting plays a vital role in the diagnosis of cancer. In recent years, digital pathology has been globally implemented as a technological tool in two main areas: telepathology (TP) and computational pathology. TP has been shown to improve rapid and timely diagnosis in anatomic pathology by facilitating interaction between general laboratories and specialized pathologists worldwide through information and telecommunication technologies. Computational pathology provides diagnostic and prognostic assistance based on histopathological patterns, molecular, and clinical information, aiding pathologists in making more accurate diagnoses. We present the study protocol of the GLORIA digital pathology network, a pioneering initiative, and national grant-approved program aiming to design and pilot a Colombian digital pathology transformation focused on TP and computational pathology, in response to the general needs of pathology laboratories for diagnosing complex malignant tumors. The study protocol describes the design of a TP network to expand oncopathology services across all Colombian regions. It also describes an artificial intelligence proposal for lung cancer, one of Colombia's most prevalent cancers, and a freely accessible national histopathological image database to facilitate image analysis studies.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.