Maria Montanucci , Guilherme Tizziotti , Giovanni Zini
{"title":"On the automorphism group of a family of maximal curves not covered by the Hermitian curve","authors":"Maria Montanucci , Guilherme Tizziotti , Giovanni Zini","doi":"10.1016/j.ffa.2024.102498","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we compute the automorphism group of the curves <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> introduced in Tafazolian et al. <span><span>[27]</span></span> as new examples of maximal curves which cannot be covered by the Hermitian curve. They arise as subcovers of the first generalized GK curve (GGS curve). As a result, a new characterization of the GK curve, as a member of this family, is obtained.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001370","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we compute the automorphism group of the curves and introduced in Tafazolian et al. [27] as new examples of maximal curves which cannot be covered by the Hermitian curve. They arise as subcovers of the first generalized GK curve (GGS curve). As a result, a new characterization of the GK curve, as a member of this family, is obtained.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.