{"title":"Distributed adaptive tracking consensus control for a class of heterogeneous nonlinear multi-agent systems","authors":"Yongqing Fan, Yu Zhang, Zhen Li","doi":"10.1016/j.matcom.2024.08.023","DOIUrl":null,"url":null,"abstract":"<div><p>The proposed approach differs from existing works in that it models the constraints of each follower as a nonlinear strict feedback system, rather than relying on a desired reference trajectory for accessible subsystems. To address the limitations caused by uncertain terms in systems, radial basis functions neural networks are utilized to compensate for these unknown nonlinear terms. This leads to a novel distributed adaptive consensus tracking control protocol for high-order nonlinear heterogeneous multi-agent systems, based on the backstepping technique. By introducing a non-zero parameter in the traditional radial basis functions neural network, a new universal approximation is constructed, which overcomes the limitation of the approximation’s finite domain. Additionally, the approximation precision can be adjusted online using provided laws, and the dimension explosion of virtual and real control gains can be avoided through the use of the designed control approach. Simulation results are provided to demonstrate the effectiveness of the proposed control scheme.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"227 ","pages":"Pages 420-441"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003240","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The proposed approach differs from existing works in that it models the constraints of each follower as a nonlinear strict feedback system, rather than relying on a desired reference trajectory for accessible subsystems. To address the limitations caused by uncertain terms in systems, radial basis functions neural networks are utilized to compensate for these unknown nonlinear terms. This leads to a novel distributed adaptive consensus tracking control protocol for high-order nonlinear heterogeneous multi-agent systems, based on the backstepping technique. By introducing a non-zero parameter in the traditional radial basis functions neural network, a new universal approximation is constructed, which overcomes the limitation of the approximation’s finite domain. Additionally, the approximation precision can be adjusted online using provided laws, and the dimension explosion of virtual and real control gains can be avoided through the use of the designed control approach. Simulation results are provided to demonstrate the effectiveness of the proposed control scheme.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.