Distributed adaptive tracking consensus control for a class of heterogeneous nonlinear multi-agent systems

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Mathematics and Computers in Simulation Pub Date : 2024-08-23 DOI:10.1016/j.matcom.2024.08.023
Yongqing Fan, Yu Zhang, Zhen Li
{"title":"Distributed adaptive tracking consensus control for a class of heterogeneous nonlinear multi-agent systems","authors":"Yongqing Fan,&nbsp;Yu Zhang,&nbsp;Zhen Li","doi":"10.1016/j.matcom.2024.08.023","DOIUrl":null,"url":null,"abstract":"<div><p>The proposed approach differs from existing works in that it models the constraints of each follower as a nonlinear strict feedback system, rather than relying on a desired reference trajectory for accessible subsystems. To address the limitations caused by uncertain terms in systems, radial basis functions neural networks are utilized to compensate for these unknown nonlinear terms. This leads to a novel distributed adaptive consensus tracking control protocol for high-order nonlinear heterogeneous multi-agent systems, based on the backstepping technique. By introducing a non-zero parameter in the traditional radial basis functions neural network, a new universal approximation is constructed, which overcomes the limitation of the approximation’s finite domain. Additionally, the approximation precision can be adjusted online using provided laws, and the dimension explosion of virtual and real control gains can be avoided through the use of the designed control approach. Simulation results are provided to demonstrate the effectiveness of the proposed control scheme.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"227 ","pages":"Pages 420-441"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003240","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The proposed approach differs from existing works in that it models the constraints of each follower as a nonlinear strict feedback system, rather than relying on a desired reference trajectory for accessible subsystems. To address the limitations caused by uncertain terms in systems, radial basis functions neural networks are utilized to compensate for these unknown nonlinear terms. This leads to a novel distributed adaptive consensus tracking control protocol for high-order nonlinear heterogeneous multi-agent systems, based on the backstepping technique. By introducing a non-zero parameter in the traditional radial basis functions neural network, a new universal approximation is constructed, which overcomes the limitation of the approximation’s finite domain. Additionally, the approximation precision can be adjusted online using provided laws, and the dimension explosion of virtual and real control gains can be avoided through the use of the designed control approach. Simulation results are provided to demonstrate the effectiveness of the proposed control scheme.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类异构非线性多代理系统的分布式自适应跟踪共识控制
所提出的方法与现有方法的不同之处在于,它将每个跟随者的约束条件建模为一个非线性严格反馈系统,而不是依赖于可访问子系统的理想参考轨迹。为了解决系统中不确定项造成的限制,利用径向基函数神经网络来补偿这些未知的非线性项。这就为高阶非线性异构多代理系统提出了一种基于反步进技术的新型分布式自适应共识跟踪控制协议。通过在传统的径向基函数神经网络中引入一个非零参数,构建了一个新的通用近似值,克服了近似值有限域的限制。此外,近似精度可通过所提供的规律进行在线调整,并且通过使用所设计的控制方法,可避免虚拟和实际控制增益的维度爆炸。仿真结果证明了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
期刊最新文献
An innovative fractional grey system model and its application Large time solution for collisional breakage model: Laplace transformation based accelerated homotopy perturbation method Efficient second-order accurate exponential time differencing for time-fractional advection–diffusion–reaction equations with variable coefficients Multi-objective optimization of the appendages of a sailing yacht using the Normal Boundary Intersection method Dynamic analysis and data-driven inference of a fractional-order SEIHDR epidemic model with variable parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1