Bao Zhonghua, Junwei Li, Jingping Zhang, Qianqian Zhang, Jinying Li, Fei Yang, Shengxu Luo
{"title":"N-doped-graphene-supported Ni/Co bimetallic catalysts for zinc-air batteries","authors":"Bao Zhonghua, Junwei Li, Jingping Zhang, Qianqian Zhang, Jinying Li, Fei Yang, Shengxu Luo","doi":"10.1016/j.micromeso.2024.113292","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalysis is essential for enhancing the energy conversion efficiency of zinc–air batteries. Nonetheless, the high cost and insufficient stability of electrocatalysts continue to hinder their commercial application. This study introduces a bifunctional composite electrocatalyst, NiCo–NG, consisting of Ni/Co bimetallic nanoparticles. The in situ integration of nanoscale graphene mitigates the agglomeration of Ni/Co metal atoms, resulting in a porous structure with a high specific surface area up to 244.6 m<sup>2</sup> g<sup>−1</sup>. Notably, the NiCo–NG catalyst demonstrates enhanced conductivity, achieving an oxygen reduction reaction (ORR) half-wave potential of 0.793 V and a limiting current density of 7.64 mA cm<sup>−2</sup>. This catalyst exhibits superior performance to commercial Pt/C electrodes, which exhibit a half-wave potential of 0.836 V and a limiting current density of 0.6 mA cm<sup>−2</sup>. Moreover, the overpotential for the oxygen evolution reaction (OER) at a current density of 10 mA cm<sup>−2</sup> is only 306.3 mV. The introduction of Ni significantly augments the catalytic activity. Employing this dual-functional catalyst in rechargeable zinc–air batteries yields a maximum power density of 181.9 mW cm<sup>−2</sup> and a specific capacity of 804.2 mAh·g<sub>Zn</sub><sup>−1</sup>. In addition, the fabricated battery demonstrates remarkable stability, enduring up to 3000 charge–discharge cycles. Ultimately, this research offers a novel electrocatalyst that could advance the commercialization of zinc–air batteries.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"380 ","pages":"Article 113292"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003147","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalysis is essential for enhancing the energy conversion efficiency of zinc–air batteries. Nonetheless, the high cost and insufficient stability of electrocatalysts continue to hinder their commercial application. This study introduces a bifunctional composite electrocatalyst, NiCo–NG, consisting of Ni/Co bimetallic nanoparticles. The in situ integration of nanoscale graphene mitigates the agglomeration of Ni/Co metal atoms, resulting in a porous structure with a high specific surface area up to 244.6 m2 g−1. Notably, the NiCo–NG catalyst demonstrates enhanced conductivity, achieving an oxygen reduction reaction (ORR) half-wave potential of 0.793 V and a limiting current density of 7.64 mA cm−2. This catalyst exhibits superior performance to commercial Pt/C electrodes, which exhibit a half-wave potential of 0.836 V and a limiting current density of 0.6 mA cm−2. Moreover, the overpotential for the oxygen evolution reaction (OER) at a current density of 10 mA cm−2 is only 306.3 mV. The introduction of Ni significantly augments the catalytic activity. Employing this dual-functional catalyst in rechargeable zinc–air batteries yields a maximum power density of 181.9 mW cm−2 and a specific capacity of 804.2 mAh·gZn−1. In addition, the fabricated battery demonstrates remarkable stability, enduring up to 3000 charge–discharge cycles. Ultimately, this research offers a novel electrocatalyst that could advance the commercialization of zinc–air batteries.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.