{"title":"Ultrasonic powder consolidation of metallic glass/Al-6061 composites","authors":"Jiahao Wang, Senji Liu, Pengyu Huang, Junsheng Liu, Yu Zhang, Xiong Liang, Sajad Sohrabi, Jiang Ma","doi":"10.1016/j.intermet.2024.108462","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional powder consolidation methods for fabricating metallic matrix composites often require high temperatures, high pressures, and substantial energy consumption. Therefore, developing new processing technologies that can manufacture composites rapidly, efficiently, and economically is crucial. This study introduces ultrasonic powder consolidation process as a novel strategy for fabricating and tuning metallic glass (MG) and aluminum alloy composites. By optimizing the mass ratios of Zr<sub>55</sub>Cu<sub>30</sub>Ni<sub>5</sub>Al<sub>10</sub> (at.%) MG to Al-6061 powders, a diverse range of composites with tailored compressive strength and plasticity was achieved. Mechanical testing showed that increasing the aluminum content improved plasticity while maintaining significant strength. Notably, the composite with a 5:5 mass ratio exhibited the best balance of mechanical properties. Morphological characterizations demonstrated excellent densification and uniformity in the composites, with no visible defects and relative densities ranging from approximately 92 %–99 %. Detailed microstructural analysis revealed the formation of a well-bonded interface with a diffusion layer, confirming the metallurgical bonding was facilitated by ultrasonic vibration. Furthermore, the ultrasonic consolidation process enabled the successful fabrication of complex shapes, such as star and gear components, demonstrating the method's potential for advanced manufacturing. These results show that the ultrasonic powder consolidation process is a viable and efficient approach for producing high-quality MG/Al-6061 composites with enhanced mechanical performance and application versatility.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"174 ","pages":"Article 108462"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524002814","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional powder consolidation methods for fabricating metallic matrix composites often require high temperatures, high pressures, and substantial energy consumption. Therefore, developing new processing technologies that can manufacture composites rapidly, efficiently, and economically is crucial. This study introduces ultrasonic powder consolidation process as a novel strategy for fabricating and tuning metallic glass (MG) and aluminum alloy composites. By optimizing the mass ratios of Zr55Cu30Ni5Al10 (at.%) MG to Al-6061 powders, a diverse range of composites with tailored compressive strength and plasticity was achieved. Mechanical testing showed that increasing the aluminum content improved plasticity while maintaining significant strength. Notably, the composite with a 5:5 mass ratio exhibited the best balance of mechanical properties. Morphological characterizations demonstrated excellent densification and uniformity in the composites, with no visible defects and relative densities ranging from approximately 92 %–99 %. Detailed microstructural analysis revealed the formation of a well-bonded interface with a diffusion layer, confirming the metallurgical bonding was facilitated by ultrasonic vibration. Furthermore, the ultrasonic consolidation process enabled the successful fabrication of complex shapes, such as star and gear components, demonstrating the method's potential for advanced manufacturing. These results show that the ultrasonic powder consolidation process is a viable and efficient approach for producing high-quality MG/Al-6061 composites with enhanced mechanical performance and application versatility.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.