Input estimation from discrete workload observations in a Lévy-driven storage system

Pub Date : 2024-08-24 DOI:10.1016/j.spl.2024.110250
Dennis Nieman , Michel Mandjes , Liron Ravner
{"title":"Input estimation from discrete workload observations in a Lévy-driven storage system","authors":"Dennis Nieman ,&nbsp;Michel Mandjes ,&nbsp;Liron Ravner","doi":"10.1016/j.spl.2024.110250","DOIUrl":null,"url":null,"abstract":"<div><p>Our goal is to estimate the characteristic exponent of the input to a Lévy-driven storage system from a sample of equispaced workload observations. The estimator relies on an approximate moment equation associated with the Laplace-Stieltjes transform of the workload at exponentially distributed sampling times. The estimator is pointwise consistent for any observation grid. Moreover, a high frequency sampling scheme yields asymptotically normal estimation errors for a class of input processes. A resampling scheme that uses the available information in a more efficient manner is suggested and assessed via simulation experiments.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002190/pdfft?md5=5722c65106dc295e96a3dbae95ac4233&pid=1-s2.0-S0167715224002190-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our goal is to estimate the characteristic exponent of the input to a Lévy-driven storage system from a sample of equispaced workload observations. The estimator relies on an approximate moment equation associated with the Laplace-Stieltjes transform of the workload at exponentially distributed sampling times. The estimator is pointwise consistent for any observation grid. Moreover, a high frequency sampling scheme yields asymptotically normal estimation errors for a class of input processes. A resampling scheme that uses the available information in a more efficient manner is suggested and assessed via simulation experiments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
莱维驱动存储系统中根据离散工作量观测结果进行输入估算
我们的目标是从等距工作负载观测样本中估算莱维驱动存储系统输入的特征指数。估算器依靠的是与指数分布采样时间内工作量的拉普拉斯-斯蒂尔杰斯变换相关的近似矩方程。对于任何观测网格,估计器都是点式一致的。此外,对于一类输入过程,高频率采样方案会产生渐近正态的估计误差。我们提出了一种能更有效地利用可用信息的重新采样方案,并通过模拟实验对其进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1