Effect of hydraulic retention time and effluent recycle ratio on biogas production from POME using UASB-HCPB fermentor assisted with ultrafiltration membrane at mesophilic condition

Bambang Trisakti , Rivaldi Sidabutar , Irvan , Luri Adriani , Josua Fransiskus Manurung , Debora Kristina Simbolon , Vikram Alexander , Mohd. Sobri Takriff , Hiroyuki Daimon
{"title":"Effect of hydraulic retention time and effluent recycle ratio on biogas production from POME using UASB-HCPB fermentor assisted with ultrafiltration membrane at mesophilic condition","authors":"Bambang Trisakti ,&nbsp;Rivaldi Sidabutar ,&nbsp;Irvan ,&nbsp;Luri Adriani ,&nbsp;Josua Fransiskus Manurung ,&nbsp;Debora Kristina Simbolon ,&nbsp;Vikram Alexander ,&nbsp;Mohd. Sobri Takriff ,&nbsp;Hiroyuki Daimon","doi":"10.1016/j.sajce.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>Biogas is renewable energy produced through anaerobic digestion based on palm oil mill effluent. Biogas production is overgrowing and is carried out in various bioreactors, such as the Upflow Anaerobic Sludge Blanket - Hollow Centered Packed Bed fermentor. Even though this process is considered successful in producing biogas, it has not adopted a recycling system. Therefore, the remaining sludge (effluent) after the processing process is generally not reused and is thrown into the environment, which still has the opportunity to produce biogas. The combination of the performance of the the Upflow Anaerobic Sludge Blanket - Hollow Centered Packed Bed fermentor with an ultrafiltration membrane is one of the latest innovations to reduce the volume of effluent wasted through recycling the effluent (retentate) into the feed tank. This research aims to produce biogas from liquid waste from palm oil mills using an Up-flow Anaerobic Sludge Blanket-Hollow Centered Packed Bed fermentor combined with ultrafiltration membranes under mesophilic conditions. In this research examines the effect of hydraulic retention time and the effluent recycling ratio on the pH profile, alkalinity, production, biogas composition, and kinetics of biogas production. The research began with loading up by varying the hydraulic retention time, namely 40, 25, and 10, until reaching the target hydraulic retention time of 6 days in a 5.4 L fermentor with a pH of 7 ± 0.2 under mesophilic conditions. Next, the effect of the recycling ratio was studied by varying the effluent (retentate) recycling ratio, namely 0, 15, and 25 %. The parameters analyzed are pH, M-Alkalinity, total solids, volatile solids, total suspended solids, volatile suspended solids, chemical oxygen demand, volume, and biogas composition. The organic content in the substrate is used as a kinetic parameter for biogas production using the modified Gompertz, Logistic, and Monod kinetic equation. The research results show that in mesophilic conditions, a recycling ratio of 25 % shows better results compared to ratios of 0 and 15 % where biogas production is 20×10<sup>-5</sup> L/mgVS.day, with a best composition of methane, carbon dioxide and hydrogen sulfide each of 88.2; 10.8; and 0.07 % (v/v), with ΔVS decomposition at 15 % and 25 % recycle ratio of 42.50 and 45.83 % (w/v). The equation for the biogas production rate constant as a function of temperature obtained is the biogas production rate constant: <span><math><mrow><mrow><mi>M</mi><mo>=</mo></mrow><mfrac><mrow><mn>299.8</mn></mrow><mrow><mrow><mn>1</mn><mo>+</mo><mtext>exp</mtext></mrow><mo>(</mo><mrow><mfrac><mrow><mn>14</mn><mrow><mo>.</mo><mn>28</mn></mrow></mrow><mrow><mn>299.8</mn></mrow></mfrac><mrow><mo>(</mo><mrow><mn>0</mn><mrow><mo>.</mo><mn>39</mn><mo>−</mo><mi>t</mi></mrow></mrow><mo>)</mo></mrow><mrow><mo>+</mo><mn>2</mn></mrow></mrow><mo>)</mo></mrow></mfrac></mrow></math></span> for logistic model, <span><math><mrow><mrow><mi>M</mi><mo>=</mo></mrow><mfrac><mrow><mn>27.2</mn><mrow><mspace></mspace><mi>x</mi><mspace></mspace><mi>s</mi></mrow></mrow><mrow><mn>2</mn><mrow><mo>.</mo><mn>46</mn><mspace></mspace><mo>+</mo><mspace></mspace><mi>s</mi></mrow></mrow></mfrac></mrow></math></span> for monod model, <span><math><mrow><mrow><mi>M</mi><mo>=</mo><mn>250</mn></mrow><mrow><mo>.</mo><mn>1</mn><mo>×</mo><mtext>exp</mtext></mrow><mo>{</mo><mrow><mrow><mo>−</mo><mtext>exp</mtext></mrow><mo>[</mo><mrow><mfrac><mrow><mn>1</mn><mrow><mo>.</mo><mn>85</mn></mrow><mrow><mo>.</mo><mi>e</mi></mrow></mrow><mrow><mn>250</mn><mrow><mo>.</mo><mn>1</mn></mrow></mrow></mfrac><mrow><mo>(</mo><mrow><mn>0</mn><mrow><mo>.</mo><mn>42</mn><mo>−</mo><mi>t</mi></mrow></mrow><mo>)</mo></mrow><mrow><mo>+</mo><mn>1</mn></mrow></mrow><mo>]</mo></mrow><mo>}</mo></mrow></math></span> for Gompertz modified kinetic model. Based on the scanning electron microscope results, it can be seen that the membrane used is an ultrafiltration membrane type, with a characteristic thickness of 7-8 µm and a pore size of 100–300 nm. The scanning electron microscope results also show that effluent contaminants deposition in the inner layer (spinger membrane) and deformation of the spinger structure are driven by forces during the effluent recycling process. The results obtained in this research show that this condition provides a clean, effective, and low-energy biogas production system that can be optimistically applied to the national palm oil industry power generation system.</p></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"50 ","pages":"Pages 209-222"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S102691852400101X/pdfft?md5=a959bb28fd9dba73990364fdab4d1df1&pid=1-s2.0-S102691852400101X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S102691852400101X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Biogas is renewable energy produced through anaerobic digestion based on palm oil mill effluent. Biogas production is overgrowing and is carried out in various bioreactors, such as the Upflow Anaerobic Sludge Blanket - Hollow Centered Packed Bed fermentor. Even though this process is considered successful in producing biogas, it has not adopted a recycling system. Therefore, the remaining sludge (effluent) after the processing process is generally not reused and is thrown into the environment, which still has the opportunity to produce biogas. The combination of the performance of the the Upflow Anaerobic Sludge Blanket - Hollow Centered Packed Bed fermentor with an ultrafiltration membrane is one of the latest innovations to reduce the volume of effluent wasted through recycling the effluent (retentate) into the feed tank. This research aims to produce biogas from liquid waste from palm oil mills using an Up-flow Anaerobic Sludge Blanket-Hollow Centered Packed Bed fermentor combined with ultrafiltration membranes under mesophilic conditions. In this research examines the effect of hydraulic retention time and the effluent recycling ratio on the pH profile, alkalinity, production, biogas composition, and kinetics of biogas production. The research began with loading up by varying the hydraulic retention time, namely 40, 25, and 10, until reaching the target hydraulic retention time of 6 days in a 5.4 L fermentor with a pH of 7 ± 0.2 under mesophilic conditions. Next, the effect of the recycling ratio was studied by varying the effluent (retentate) recycling ratio, namely 0, 15, and 25 %. The parameters analyzed are pH, M-Alkalinity, total solids, volatile solids, total suspended solids, volatile suspended solids, chemical oxygen demand, volume, and biogas composition. The organic content in the substrate is used as a kinetic parameter for biogas production using the modified Gompertz, Logistic, and Monod kinetic equation. The research results show that in mesophilic conditions, a recycling ratio of 25 % shows better results compared to ratios of 0 and 15 % where biogas production is 20×10-5 L/mgVS.day, with a best composition of methane, carbon dioxide and hydrogen sulfide each of 88.2; 10.8; and 0.07 % (v/v), with ΔVS decomposition at 15 % and 25 % recycle ratio of 42.50 and 45.83 % (w/v). The equation for the biogas production rate constant as a function of temperature obtained is the biogas production rate constant: M=299.81+exp(14.28299.8(0.39t)+2) for logistic model, M=27.2xs2.46+s for monod model, M=250.1×exp{exp[1.85.e250.1(0.42t)+1]} for Gompertz modified kinetic model. Based on the scanning electron microscope results, it can be seen that the membrane used is an ultrafiltration membrane type, with a characteristic thickness of 7-8 µm and a pore size of 100–300 nm. The scanning electron microscope results also show that effluent contaminants deposition in the inner layer (spinger membrane) and deformation of the spinger structure are driven by forces during the effluent recycling process. The results obtained in this research show that this condition provides a clean, effective, and low-energy biogas production system that can be optimistically applied to the national palm oil industry power generation system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在中嗜酸性条件下使用 UASB-HCPB 发酵器辅助超滤膜从 POME 中生产沼气时水力停留时间和污水循环比率的影响
沼气是以棕榈油厂污水为基础,通过厌氧消化产生的可再生能源。沼气生产在不断增长,并在各种生物反应器中进行,例如上流式厌氧污泥毯-中空填料床发酵器。尽管这种工艺在生产沼气方面被认为是成功的,但它没有采用循环系统。因此,处理过程后剩余的污泥(污水)一般不会再利用,而是被丢弃到环境中,而环境仍有机会产生沼气。将上流式厌氧污泥毯-中空填料床发酵池的性能与超滤膜相结合,是通过将污水(回流液)回收到进料池来减少污水浪费量的最新创新技术之一。这项研究的目的是在中嗜酸性条件下,利用上流式厌氧污泥毯-中空填料床发酵池与超滤膜相结合,从棕榈油厂的液体废物中生产沼气。本研究探讨了水力停留时间和污水循环比率对 pH 值、碱度、产量、沼气成分和沼气生产动力学的影响。研究首先通过改变水力停留时间(即 40、25 和 10)进行加载,直至达到目标水力停留时间 6 天,在中嗜酸条件下,在 5.4 L 发酵罐中的 pH 值为 7 ± 0.2。接着,通过改变出水(回流液)的回收率(即 0%、15% 和 25%)来研究回收率的影响。分析的参数包括 pH 值、M-碱度、总固体、挥发性固体、总悬浮固体、挥发性悬浮固体、化学需氧量、体积和沼气成分。基质中的有机物含量被用作沼气生产的动力学参数,使用的是改进的 Gompertz、Logistic 和 Monod 动力方程。研究结果表明,在中嗜酸性条件下,与 0% 和 15% 的循环比率相比,25% 的循环比率显示出更好的效果,在这一比率下,沼气产量为 20×10-5 L/mgVS.day,甲烷、二氧化碳和硫化氢的最佳成分分别为 88.2%、10.8% 和 0.07%(体积分数),循环比率为 15% 和 25% 时,ΔVS 分解率分别为 42.50% 和 45.83%(体积分数)。得到的沼气产生速率常数与温度的函数关系式为:沼气产生速率常数:M=299.81+exp(14.28299.8(0.39-t)+2)(Logistic 模型),M=27.2xs2.46+s(monod 模型),M=250.1×exp{-exp[1.85.e250.1(0.42-t)+1]}(Gompertz 修正动力学模型)。根据扫描电子显微镜的结果,可以看出所使用的膜是超滤膜,其特征厚度为 7-8 µm,孔径为 100-300 nm。扫描电子显微镜结果还显示,在污水回收过程中,污水污染物在内层(刺膜)的沉积和刺膜结构的变形是受力驱动的。这项研究的结果表明,这种条件提供了一种清洁、有效和低能耗的沼气生产系统,可乐观地应用于国家棕榈油工业发电系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
100
审稿时长
33 weeks
期刊介绍: The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.
期刊最新文献
Effect of ethanol concentration on the catalytic performance of WO3/MCF-Si and WO3/SBA-15 catalysts toward ethanol dehydration to ethylene Parameter influences of FTO/ZnO/Cu₂O photodetectors fabricated by electrodeposition and spray pyrolysis techniques Predicting ash content and water content in coal using full infrared spectra and machine learning models A green route of antibacterial films production from shrimp (Penaeus monodon) shell waste biomass derived chitosan: Physicochemical, thermomechanical, morphological and antimicrobial activity analysis Synthesis of Mannich N-bases based on benzimidazole derivatives using SiO2OAlCl2 catalyst and their potential as antioxidant, antibacterial, and anticancer agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1