K. S. Olsen, A. A. Fedorova, D. M. Kass, A. Kleinböhl, A. Trokhimovskiy, O. I. Korablev, F. Montmessin, F. Lefèvre, L. Baggio, J. Alday, D. A. Belyaev, J. A. Holmes, J. P. Mason, P. M. Streeter, K. Rajendran, M. R. Patel, A. Patrakeev, A. Shakun
{"title":"Relationships Between HCl, H2O, Aerosols, and Temperature in the Martian Atmosphere: 1. Climatological Outlook","authors":"K. S. Olsen, A. A. Fedorova, D. M. Kass, A. Kleinböhl, A. Trokhimovskiy, O. I. Korablev, F. Montmessin, F. Lefèvre, L. Baggio, J. Alday, D. A. Belyaev, J. A. Holmes, J. P. Mason, P. M. Streeter, K. Rajendran, M. R. Patel, A. Patrakeev, A. Shakun","doi":"10.1029/2024JE008350","DOIUrl":null,"url":null,"abstract":"<p>Detecting trace gases such as hydrogen chloride (HCl) in Mars' atmosphere is among the primary objectives of the ExoMars Trace Gas Orbiter (TGO) mission. Terrestrially, HCl is closely associated with active volcanic activity, so its detection on Mars was expected to point to some form of active magmatism/outgassing. However, after its discovery using the mid-infrared channel of the TGO Atmospheric Chemistry Suite (ACS MIR), a clear seasonality was observed, beginning with a sudden increase in HCl abundance from below detection limits to 1–3 ppbv in both hemispheres coincident with the start of dust activity, followed by very sudden and rapid loss at the southern autumnal equinox. In this study, we have investigated the relationship between HCl and atmospheric dust by making comparisons in the vertical distribution of gases measured with ACS and aerosols measured co-located with the Mars Climate Sounder (MCS). This study includes HCl, water vapor, and ozone measured using ACS MIR, water vapor and temperature measured with the near infrared channel of ACS, and temperature, dust opacity, and water ice opacity measured with MCS. In part 1, we show that dust loading has a strong impact in temperature, which controls the abundance of water ice and water vapor, and that HCl is very closely linked to water activity. In part 2, we investigate the quantitative correlations between each quantity and discuss the possible source and sinks of HCl, their likelihood given the correlations, and any issues arising from them.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008350","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008350","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting trace gases such as hydrogen chloride (HCl) in Mars' atmosphere is among the primary objectives of the ExoMars Trace Gas Orbiter (TGO) mission. Terrestrially, HCl is closely associated with active volcanic activity, so its detection on Mars was expected to point to some form of active magmatism/outgassing. However, after its discovery using the mid-infrared channel of the TGO Atmospheric Chemistry Suite (ACS MIR), a clear seasonality was observed, beginning with a sudden increase in HCl abundance from below detection limits to 1–3 ppbv in both hemispheres coincident with the start of dust activity, followed by very sudden and rapid loss at the southern autumnal equinox. In this study, we have investigated the relationship between HCl and atmospheric dust by making comparisons in the vertical distribution of gases measured with ACS and aerosols measured co-located with the Mars Climate Sounder (MCS). This study includes HCl, water vapor, and ozone measured using ACS MIR, water vapor and temperature measured with the near infrared channel of ACS, and temperature, dust opacity, and water ice opacity measured with MCS. In part 1, we show that dust loading has a strong impact in temperature, which controls the abundance of water ice and water vapor, and that HCl is very closely linked to water activity. In part 2, we investigate the quantitative correlations between each quantity and discuss the possible source and sinks of HCl, their likelihood given the correlations, and any issues arising from them.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.