Synthesis of Porous Carbon Honeycomb Structures Derived from Hemp for Hybrid Supercapacitors with Improved Electrochemistry.

IF 3 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemPlusChem Pub Date : 2024-08-28 DOI:10.1002/cplu.202400408
Manickam Minakshi, Agha Mujeeb, Jonathan Whale, Richard Evans, Rob Aughterson, Pragati A Shinde, Katsuhiko Ariga, Lok Kumar Shrestha
{"title":"Synthesis of Porous Carbon Honeycomb Structures Derived from Hemp for Hybrid Supercapacitors with Improved Electrochemistry.","authors":"Manickam Minakshi, Agha Mujeeb, Jonathan Whale, Richard Evans, Rob Aughterson, Pragati A Shinde, Katsuhiko Ariga, Lok Kumar Shrestha","doi":"10.1002/cplu.202400408","DOIUrl":null,"url":null,"abstract":"<p><p>Energy storage in electrochemical hybrid capacitors involves fast faradaic reactions such as an intercalation, or redox process occurring at a solid electrode surface at an appropriate potential. Hybrid sodium-ion electrochemical capacitors bring the advantages of both the high specific power of capacitors and the high specific energy of batteries, where activated carbon serves as a critical electrode material. The charge storage in activated carbon arises from an adsorption process rather than a redox reaction and is an electrical double-layer capacitor. Advanced carbon materials with interconnecting porous structures possessing high surface area and high conductivity are the prerequisites 1128to qualify for efficient energy storage. Herein, we have demonstrated that a porous honeycomb structure activated carbon derived from Australian hemp hurd (Cannabis sativa L.) in aqueous Na<sub>2</sub>SO<sub>4</sub> electrolyte showed a specific capacitance of 240 F/g at 1 A/g. The mass ratio of biochar to KOH during the chemical activation associated with the synthesis temperature influences the change in morphologies, and distribution of pore sizes on the adsorption of ions. At higher synthesis temperatures, the tubular form of the honeycomb starts to disintegrate. The hybrid sodium-ion device employing hemp-derived activated carbon (HAC) coupled with electrolytic manganese dioxide (EMD) in an aqueous Na<sub>2</sub>SO<sub>4</sub> electrolyte showed a specific capacitance of 95 F/g at 1 A/g having a capacitance retention of 90 %. The hybrid device (HAC||EMD) can possess excellent electrochemical performance metrics, having a high energy density of 38 Wh/kg at a power density of 761 W/kg. Overall, this study provides insights into the influence of the activation temperature and the KOH impregnation ratio on morphology, porosity distribution, and the activated carbon's electrochemical properties with faster kinetics. The high cell voltage for the device is devoted to the EMD electrode.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400408"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400408","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy storage in electrochemical hybrid capacitors involves fast faradaic reactions such as an intercalation, or redox process occurring at a solid electrode surface at an appropriate potential. Hybrid sodium-ion electrochemical capacitors bring the advantages of both the high specific power of capacitors and the high specific energy of batteries, where activated carbon serves as a critical electrode material. The charge storage in activated carbon arises from an adsorption process rather than a redox reaction and is an electrical double-layer capacitor. Advanced carbon materials with interconnecting porous structures possessing high surface area and high conductivity are the prerequisites 1128to qualify for efficient energy storage. Herein, we have demonstrated that a porous honeycomb structure activated carbon derived from Australian hemp hurd (Cannabis sativa L.) in aqueous Na2SO4 electrolyte showed a specific capacitance of 240 F/g at 1 A/g. The mass ratio of biochar to KOH during the chemical activation associated with the synthesis temperature influences the change in morphologies, and distribution of pore sizes on the adsorption of ions. At higher synthesis temperatures, the tubular form of the honeycomb starts to disintegrate. The hybrid sodium-ion device employing hemp-derived activated carbon (HAC) coupled with electrolytic manganese dioxide (EMD) in an aqueous Na2SO4 electrolyte showed a specific capacitance of 95 F/g at 1 A/g having a capacitance retention of 90 %. The hybrid device (HAC||EMD) can possess excellent electrochemical performance metrics, having a high energy density of 38 Wh/kg at a power density of 761 W/kg. Overall, this study provides insights into the influence of the activation temperature and the KOH impregnation ratio on morphology, porosity distribution, and the activated carbon's electrochemical properties with faster kinetics. The high cell voltage for the device is devoted to the EMD electrode.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从大麻中合成多孔碳蜂窝结构,用于改进电化学性能的混合超级电容器。
电化学混合电容器中的能量存储涉及快速的法拉第反应,如在适当电位下固体电极表面发生的插层或氧化还原过程。钠离子混合电化学电容器兼具电容器的高比功率和电池的高比能量的优点,其中活性炭是一种关键的电极材料。在此,我们证明了在 Na2SO4 水电解质中,从澳大利亚大麻(Cannabis sativa L.)中提取的多孔蜂窝结构活性炭在 1 A/g 时的比电容为 240 F/g。在 Na2SO4 水溶液电解质中采用大麻活性炭(HAC)和电解二氧化锰(EMD)的混合钠离子装置在 1 A/g 时的比电容为 95 F/g,电容保持率为 90%。混合器件(HAC||EMD)具有出色的电化学性能指标,在功率密度为 761 W/kg 时,能量密度高达 38 Wh/kg。总之,这项研究深入探讨了活化温度和 KOH 浸渍比例对形貌、孔隙率分布以及活性炭电化学性能的影响,并加快了动力学进程。该装置的高电池电压归功于 EMD 电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemPlusChem
ChemPlusChem CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
0.00%
发文量
200
审稿时长
1 months
期刊介绍: ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.
期刊最新文献
Origin of Regioselectivity Inversion Tuned by Substrate Electronic Properties in Co(III)-Catalyzed Annulation of N-Chlorobenzamide with Alkenes. The Dual-Role of Benzothiadiazole Fluorophores for Enabling Electrofluorochromic and Electrochromic Devices. Modelling Lithium-ion Transport Properties in Sulfoxides and Sulfones with Polarizable Molecular Dynamics and NMR Spectroscopy. Why Including Solvation is Paramount: First-Principles Calculations of Electrochemical CO2 Reduction to CO on a Cu Electrocatalyst. Thermoresponsive Polymers as Viscosity Modifiers: Innovative Nanoarchitectures as Lubricant Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1