{"title":"Preparation and Performance Evaluation of a Supramolecular Polymer Gel-Based Temporary Plugging Agent for Heavy Oil Reservoir.","authors":"Cheng Niu, Sheng Fan, Xiuping Chen, Zhong He, Liyao Dai, Zhibo Wen, Meichun Li","doi":"10.3390/gels10080536","DOIUrl":null,"url":null,"abstract":"<p><p>When encountering heavy oil reservoirs during drilling, due to the change in pressure difference inside the well, heavy oil will invade the drilling fluid, and drilling fluid will spill into the reservoir along the formation fractures, affecting the drilling process. A supramolecular polymer gel-based temporary plugging agent was prepared using acrylamide (AM), butyl acrylate (BA), and styrene (ST) as reacting monomers, N, N-methylenebisacrylamide (MBA) as a crosslinking agent, ammonium persulfate (APS) as an initiator, and poly(vinyl alcohol) (PVA) as a non-covalent component. A supermolecular polymer gel with a temperature tolerance of 120 °C and acid solubility of 90% was developed. The experimental results demonstrated that a mechanically robust, thermally stable supramolecular polymer gel was successfully synthesized through the copolymerization of AM, BA, and ST, as well as the in situ formation hydrogen bonding between poly (AM-co-BA-co-ST) and PVA, leading to a three-dimensional entangled structure. The gel-forming solution possessed excellent gelling performance even in the presence of a high content of salt and heavy oil, demonstrating superior resistance to salt and heavy oil under harsh reservoir conditions. High-temperature and high-pressure plugging displacement experiments proved that the supramolecular polymer gel exhibited high pressure-bearing capacity, and the blocking strength reached 5.96 MPa in a wedge-shaped fracture with a length of 30 cm. Furthermore, the dissolution rate of the supramolecular polymer gel was as high as 96.2% at 120 °C for 48 h under a 15% HCl solution condition.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11354005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10080536","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
When encountering heavy oil reservoirs during drilling, due to the change in pressure difference inside the well, heavy oil will invade the drilling fluid, and drilling fluid will spill into the reservoir along the formation fractures, affecting the drilling process. A supramolecular polymer gel-based temporary plugging agent was prepared using acrylamide (AM), butyl acrylate (BA), and styrene (ST) as reacting monomers, N, N-methylenebisacrylamide (MBA) as a crosslinking agent, ammonium persulfate (APS) as an initiator, and poly(vinyl alcohol) (PVA) as a non-covalent component. A supermolecular polymer gel with a temperature tolerance of 120 °C and acid solubility of 90% was developed. The experimental results demonstrated that a mechanically robust, thermally stable supramolecular polymer gel was successfully synthesized through the copolymerization of AM, BA, and ST, as well as the in situ formation hydrogen bonding between poly (AM-co-BA-co-ST) and PVA, leading to a three-dimensional entangled structure. The gel-forming solution possessed excellent gelling performance even in the presence of a high content of salt and heavy oil, demonstrating superior resistance to salt and heavy oil under harsh reservoir conditions. High-temperature and high-pressure plugging displacement experiments proved that the supramolecular polymer gel exhibited high pressure-bearing capacity, and the blocking strength reached 5.96 MPa in a wedge-shaped fracture with a length of 30 cm. Furthermore, the dissolution rate of the supramolecular polymer gel was as high as 96.2% at 120 °C for 48 h under a 15% HCl solution condition.