{"title":"Preparation of Complex Polysaccharide Gels with <i>Zanthoxylum bungeanum</i> Essential Oil and Their Application in Fish Preservation.","authors":"Shan Xue, Chao Li, Zhouyi Xiong","doi":"10.3390/gels10080533","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, novel functional ZEO-complex gels were prepared using sodium alginate, inulin, grape seed extract (GSE), and <i>Zanthoxylum bungeanum</i> essential oil (ZEO) as the primary raw materials. The effect of the addition of inulin, GSE, and ZEO on water vapor permeability (WVP), tensile strength (TS), and elongation at break (EAB) of ZEO-complex polysaccharide gels was investigated. A comprehensive score (Y) for evaluating the characteristics of ZEO-complex polysaccharide gels was established by principal component analysis. MATLAB analysis and box-Behnken design describe each factor's four-dimensional and three-dimensional interactions. It was found that Y could reach the maximum value when the ZEO addition was at a moderate level (C = 2%). The optimum preparation process of ZEO-complex polysaccharide gels was as follows: the addition of inulin was at 0.84%, the addition of GSE was at 0.04%, and the addition of ZEO was at 2.0785%; in this way, the Y of ZEO-complex polysaccharide gels reached the maximum (0.82276). Optical scanning and X-ray diffraction tests confirmed that the prepared ZEO-complex gels have a smooth and continuous microstructure, good water insulation, and mechanical properties. The storage test results show that ZEO-complex polysaccharide gels could play a significant role in the storage and fresh-keeping of grass carp, and the physicochemical properties of complex polysaccharide gels were improved by adding ZEO. In addition, according to the correlation of fish index changes during storage, adding ZEO in complex polysaccharide gels was closely correlated with the changes in fish TBARS and TVB-N oxidation decay indices. In conclusion, the ZEO-complex polysaccharide gels prepared in this study had excellent water insulation, mechanical properties, and outstanding fresh-keeping effects on grass carp.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10080533","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, novel functional ZEO-complex gels were prepared using sodium alginate, inulin, grape seed extract (GSE), and Zanthoxylum bungeanum essential oil (ZEO) as the primary raw materials. The effect of the addition of inulin, GSE, and ZEO on water vapor permeability (WVP), tensile strength (TS), and elongation at break (EAB) of ZEO-complex polysaccharide gels was investigated. A comprehensive score (Y) for evaluating the characteristics of ZEO-complex polysaccharide gels was established by principal component analysis. MATLAB analysis and box-Behnken design describe each factor's four-dimensional and three-dimensional interactions. It was found that Y could reach the maximum value when the ZEO addition was at a moderate level (C = 2%). The optimum preparation process of ZEO-complex polysaccharide gels was as follows: the addition of inulin was at 0.84%, the addition of GSE was at 0.04%, and the addition of ZEO was at 2.0785%; in this way, the Y of ZEO-complex polysaccharide gels reached the maximum (0.82276). Optical scanning and X-ray diffraction tests confirmed that the prepared ZEO-complex gels have a smooth and continuous microstructure, good water insulation, and mechanical properties. The storage test results show that ZEO-complex polysaccharide gels could play a significant role in the storage and fresh-keeping of grass carp, and the physicochemical properties of complex polysaccharide gels were improved by adding ZEO. In addition, according to the correlation of fish index changes during storage, adding ZEO in complex polysaccharide gels was closely correlated with the changes in fish TBARS and TVB-N oxidation decay indices. In conclusion, the ZEO-complex polysaccharide gels prepared in this study had excellent water insulation, mechanical properties, and outstanding fresh-keeping effects on grass carp.