{"title":"Assessing Transducer Parameters for Accurate Medium Sound Speed Estimation and Image Reconstruction","authors":"Rick Waasdorp;David Maresca;Guillaume Renaud","doi":"10.1109/TUFFC.2024.3445131","DOIUrl":null,"url":null,"abstract":"The influence of the transducer lens on image reconstruction is often overlooked. Lenses usually exhibit a lower sound speed than soft biological tissues. In academic research, the exact lens sound speed and thickness are typically unknown. Here, we present a simple and nondestructive method to characterize the lens sound speed and thickness as well as the time to peak of the round-trip ultrasound waveform, another key parameter for optimal image reconstruction. We applied our method to three transducers with center frequencies of 2.5, 7.5, and 15 MHz. We estimated the three parameters with an element-by-element transmission sequence that records internal reflections within the lens. We validated the retrieved parameters using an autofocusing approach that estimates sound speed in water. We show that the combination of our parameters estimation method with two-layer ray tracing outperforms standard image reconstruction. For all transducers, we successfully improved the accuracy of medium sound speed estimation, spatial resolution, and contrast. The proposed method is simple and robust and provides an accurate estimation of the transducer lens parameters and the time to peak of the ultrasound waveform, which leads to improved ultrasound image quality.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 10","pages":"1233-1243"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10653747","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10653747/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of the transducer lens on image reconstruction is often overlooked. Lenses usually exhibit a lower sound speed than soft biological tissues. In academic research, the exact lens sound speed and thickness are typically unknown. Here, we present a simple and nondestructive method to characterize the lens sound speed and thickness as well as the time to peak of the round-trip ultrasound waveform, another key parameter for optimal image reconstruction. We applied our method to three transducers with center frequencies of 2.5, 7.5, and 15 MHz. We estimated the three parameters with an element-by-element transmission sequence that records internal reflections within the lens. We validated the retrieved parameters using an autofocusing approach that estimates sound speed in water. We show that the combination of our parameters estimation method with two-layer ray tracing outperforms standard image reconstruction. For all transducers, we successfully improved the accuracy of medium sound speed estimation, spatial resolution, and contrast. The proposed method is simple and robust and provides an accurate estimation of the transducer lens parameters and the time to peak of the ultrasound waveform, which leads to improved ultrasound image quality.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.