{"title":"Osteogenic Protection against Fine Dust with Erucic Acid-Induced Exosomes.","authors":"Hyunjung Kim, Boyong Kim","doi":"10.3390/jfb15080215","DOIUrl":null,"url":null,"abstract":"<p><p>Fine dust causes various disorders, including cardiovascular, neurological, renal, reproductive, motor, systemic, respiratory, and cancerous diseases. Therefore, it is essential to study functional materials to prevent these issues. This study investigated the beneficial effects of erucic acid against fine dust using methods such as miRNA profiling, quantitative PCR, flow cytometry, ELISA, and Alizarin O staining. Erucic acid effectively suppresses inflammation and upregulates osteogenic activators in fibroblasts exposed to fine dust. Additionally, erucic acid-induced exosomes (EIEs) strongly counteract the negative effects of fine dust on osteocytic differentiation and inflammation. Despite fine dust exposure, EIEs promoted osteocytic differentiation in adipose-derived stem cells (ASCs) and enhanced osteogenesis and phagocytosis in macrophages. The significant upregulation of RunX2 and BMP7 by EIEs indicates its strong role in osteocytic differentiation and protection against the effects of fine dust. EIEs also boosts immune activity and acts as an osteogenic trigger for macrophages. MicroRNA profiling revealed that EIEs dramatically upregulated miRNAs, including hsa-miRNA-1301-3p, hsa-miRNA-1908-5p, hsa-miRNA-423-5p, and hsa-miRNA-122-5p, which are associated with osteogenic differentiation and immunity. Therefore, EIEs show potential as biomaterials to prevent environment-borne diseases.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355519/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15080215","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fine dust causes various disorders, including cardiovascular, neurological, renal, reproductive, motor, systemic, respiratory, and cancerous diseases. Therefore, it is essential to study functional materials to prevent these issues. This study investigated the beneficial effects of erucic acid against fine dust using methods such as miRNA profiling, quantitative PCR, flow cytometry, ELISA, and Alizarin O staining. Erucic acid effectively suppresses inflammation and upregulates osteogenic activators in fibroblasts exposed to fine dust. Additionally, erucic acid-induced exosomes (EIEs) strongly counteract the negative effects of fine dust on osteocytic differentiation and inflammation. Despite fine dust exposure, EIEs promoted osteocytic differentiation in adipose-derived stem cells (ASCs) and enhanced osteogenesis and phagocytosis in macrophages. The significant upregulation of RunX2 and BMP7 by EIEs indicates its strong role in osteocytic differentiation and protection against the effects of fine dust. EIEs also boosts immune activity and acts as an osteogenic trigger for macrophages. MicroRNA profiling revealed that EIEs dramatically upregulated miRNAs, including hsa-miRNA-1301-3p, hsa-miRNA-1908-5p, hsa-miRNA-423-5p, and hsa-miRNA-122-5p, which are associated with osteogenic differentiation and immunity. Therefore, EIEs show potential as biomaterials to prevent environment-borne diseases.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.