Comparative Analysis of the Mitochondrial Genome Sequences of Diaporthe longicolla (syn. Phomopsis longicolla) Isolates Causing Phomopsis Seed Decay in Soybean.
{"title":"Comparative Analysis of the Mitochondrial Genome Sequences of <i>Diaporthe longicolla</i> (syn. <i>Phomopsis longicolla</i>) Isolates Causing Phomopsis Seed Decay in Soybean.","authors":"Shuxian Li, Xiaojun Hu, Qijian Song","doi":"10.3390/jof10080570","DOIUrl":null,"url":null,"abstract":"<p><p><i>Diaporthe longicolla</i> (syn. <i>Phomopsis longicolla</i>) is an important seed-borne fungal pathogen and the primary cause of Phomopsis seed decay (PSD) in soybean. PSD is one of the most devastating seed diseases, reducing soybean seed quality and yield worldwide. As part of a genome sequencing project on the fungal <i>Diaporthe-Phomopsis</i> complex, draft genomes of eight <i>D. longicolla</i> isolates were sequenced and assembled. Sequences of mitochondrial genomes were extracted and analyzed. The circular mitochondrial genomes ranged from 52,534 bp to 58,280 bp long, with a mean GC content of 34%. A total of 14 core protein-coding genes, 23 tRNA, and 2 rRNA genes were identified. Introns were detected in the genes of <i>atp6</i>, <i>cob</i>, <i>cox1</i>, <i>cox2</i>, <i>cox3</i>, <i>nad1</i>, <i>nad2</i>, <i>nad5</i>, and <i>rnl</i>. Three isolates (PL7, PL10, and PL185E) had more introns than other isolates. Approximately 6.4% of the mitochondrial genomes consist of repetitive elements. Moreover, 48 single-nucleotide polymorphisms (SNPs) and were identified. The mitochondrial genome sequences of <i>D. longicolla</i> will be useful to further study the molecular basis of seed-borne pathogens causing seed diseases, investigate genetic variation among isolates, and develop improved control strategies for Phomopsis seed decay of soybean.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10080570","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diaporthe longicolla (syn. Phomopsis longicolla) is an important seed-borne fungal pathogen and the primary cause of Phomopsis seed decay (PSD) in soybean. PSD is one of the most devastating seed diseases, reducing soybean seed quality and yield worldwide. As part of a genome sequencing project on the fungal Diaporthe-Phomopsis complex, draft genomes of eight D. longicolla isolates were sequenced and assembled. Sequences of mitochondrial genomes were extracted and analyzed. The circular mitochondrial genomes ranged from 52,534 bp to 58,280 bp long, with a mean GC content of 34%. A total of 14 core protein-coding genes, 23 tRNA, and 2 rRNA genes were identified. Introns were detected in the genes of atp6, cob, cox1, cox2, cox3, nad1, nad2, nad5, and rnl. Three isolates (PL7, PL10, and PL185E) had more introns than other isolates. Approximately 6.4% of the mitochondrial genomes consist of repetitive elements. Moreover, 48 single-nucleotide polymorphisms (SNPs) and were identified. The mitochondrial genome sequences of D. longicolla will be useful to further study the molecular basis of seed-borne pathogens causing seed diseases, investigate genetic variation among isolates, and develop improved control strategies for Phomopsis seed decay of soybean.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.