Revisiting the Effect of the Resistance to Gas Accumulation in Constant Volume Systems on the Membrane Time Lag.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL Membranes Pub Date : 2024-07-30 DOI:10.3390/membranes14080167
Peter Jr Leszczynski, Siamak Lashkari, Boguslaw Kruczek
{"title":"Revisiting the Effect of the Resistance to Gas Accumulation in Constant Volume Systems on the Membrane Time Lag.","authors":"Peter Jr Leszczynski, Siamak Lashkari, Boguslaw Kruczek","doi":"10.3390/membranes14080167","DOIUrl":null,"url":null,"abstract":"<p><p>The time-lag method is commonly used to determine membrane permeability, diffusivity and solubility in a single gas permeation experiment in a constant volume system. An unwritten assumption on which this method relies is that there is no resistance to gas accumulation in the downstream receiver of the system. However, this is not the case, even with the specially designed receiver used in this study when, in addition to tubing, the receiver utilizes an additional accumulation tank. The resistance to gas accumulation originates from a finite diffusivity (Knudsen diffusion) of gases in tubing, which are magnified by \"resistance-free\" accumulation tank(s). As a result of the resistance to gas accumulation, the time lag of the membrane is underestimated, which leads to an overestimation of gas diffusivity in the membrane. The experimentally predicted resistances in different configurations of the receiver, expressed by the difference in the time lag at two different receiver locations, were several times greater than the theoretically predicted values. A high molecular PPO membrane was used to demonstrate this effect. The time lags measured at different locations differed by as much as 30%. The diffusivity of nitrogen in a PPO of 4.04 × 10<sup>-12</sup> m<sup>2</sup>/s determined at the optimum configuration of the receiver is at least 50% lower than the literature-reported values.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14080167","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The time-lag method is commonly used to determine membrane permeability, diffusivity and solubility in a single gas permeation experiment in a constant volume system. An unwritten assumption on which this method relies is that there is no resistance to gas accumulation in the downstream receiver of the system. However, this is not the case, even with the specially designed receiver used in this study when, in addition to tubing, the receiver utilizes an additional accumulation tank. The resistance to gas accumulation originates from a finite diffusivity (Knudsen diffusion) of gases in tubing, which are magnified by "resistance-free" accumulation tank(s). As a result of the resistance to gas accumulation, the time lag of the membrane is underestimated, which leads to an overestimation of gas diffusivity in the membrane. The experimentally predicted resistances in different configurations of the receiver, expressed by the difference in the time lag at two different receiver locations, were several times greater than the theoretically predicted values. A high molecular PPO membrane was used to demonstrate this effect. The time lags measured at different locations differed by as much as 30%. The diffusivity of nitrogen in a PPO of 4.04 × 10-12 m2/s determined at the optimum configuration of the receiver is at least 50% lower than the literature-reported values.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视恒容系统中气体积聚阻力对薄膜时滞的影响。
时滞法通常用于在恒定体积系统中的一次气体渗透实验中确定膜渗透性、扩散性和溶解性。这种方法所依赖的一个不成文的假设是,在系统的下游接收器中没有气体积聚的阻力。然而,事实并非如此,即使是本研究中使用的特殊设计的接收器,除管道外,接收器还使用了一个额外的积聚罐。气体积聚的阻力来自管路中气体的有限扩散率(克努森扩散),而 "无阻力 "积聚罐放大了这一阻力。由于气体积聚的阻力,膜的时滞被低估,从而导致膜中气体扩散率被高估。实验预测的不同配置接收器的阻力(以两个不同接收器位置的时滞差表示)比理论预测值大几倍。高分子 PPO 膜被用来证明这种效应。在不同位置测得的时滞相差高达 30%。在接收器的最佳配置下测定的 PPO 中氮的扩散率为 4.04 × 10-12 m2/s,比文献报道的值至少低 50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
The Application of TiO2/ZrO2-Modified Nanocomposite PES Membrane for Improved Permeability of Textile Dye in Water. Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. Cell Type-Specific Anti- and Pro-Oxidative Effects of Punica granatum L. Ellagitannins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1