{"title":"In vitro Assessment of lesion activity using simultaneous time-resolved reflectance imaging at 1300 and 1950 nm.","authors":"Spencer Wycoff, Yihua Zhu, Daniel Fried","doi":"10.1007/s10103-024-04168-y","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to explore the feasibility of a time-resolved reflectance imaging system employing a single photodetector to assess the activity of caries lesions that exploits the differential absorption of water at 1300 and 1950 nm. The time-resolved reflectivity of 10 active and 10 arrested lesions on the proximal surfaces and 5 active and 5 arrested lesions on the occlusal surfaces of extracted teeth were monitored simultaneously at 1300 and 1950 nm during forced air drying for 60 s. The presence of a highly mineralized surface zone measured with microcomputed tomography (microCT) was used to indicate lesion activity. Multiple kinetic parameters were extracted from the acquired short wavelength infrared (SWIR) intensity versus time dehydration curves and used to assess lesion activity. Differences in the reflectivity between curves acquired at 1300 and 1950 nm due to differential absorption of water provided improved discrimination between active and arrested lesions over the use of 1950 nm alone. This study demonstrates that it is feasible to use a device with a single photodetector operating at 1950 nm to collect dehydration curves for the assessment of lesion activity and that a system employing two SWIR wavelengths with differential water absorption can improve the performance of lesion activity assessment.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":"39 1","pages":"223"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-024-04168-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to explore the feasibility of a time-resolved reflectance imaging system employing a single photodetector to assess the activity of caries lesions that exploits the differential absorption of water at 1300 and 1950 nm. The time-resolved reflectivity of 10 active and 10 arrested lesions on the proximal surfaces and 5 active and 5 arrested lesions on the occlusal surfaces of extracted teeth were monitored simultaneously at 1300 and 1950 nm during forced air drying for 60 s. The presence of a highly mineralized surface zone measured with microcomputed tomography (microCT) was used to indicate lesion activity. Multiple kinetic parameters were extracted from the acquired short wavelength infrared (SWIR) intensity versus time dehydration curves and used to assess lesion activity. Differences in the reflectivity between curves acquired at 1300 and 1950 nm due to differential absorption of water provided improved discrimination between active and arrested lesions over the use of 1950 nm alone. This study demonstrates that it is feasible to use a device with a single photodetector operating at 1950 nm to collect dehydration curves for the assessment of lesion activity and that a system employing two SWIR wavelengths with differential water absorption can improve the performance of lesion activity assessment.
期刊介绍:
Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics.
The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.