Identification of single-cell blasts in pediatric acute myeloid leukemia using an autoencoder.

IF 3.3 2区 生物学 Q1 BIOLOGY Life Science Alliance Pub Date : 2024-08-27 Print Date: 2024-11-01 DOI:10.26508/lsa.202402674
Alice Driessen, Susanne Unger, An-Phi Nguyen, Rhonda E Ries, Soheil Meshinchi, Stefanie Kreutmair, Chiara Alberti, Pavel Sumazin, Richard Aplenc, Michele S Redell, Burkhard Becher, María Rodríguez Martínez
{"title":"Identification of single-cell blasts in pediatric acute myeloid leukemia using an autoencoder.","authors":"Alice Driessen, Susanne Unger, An-Phi Nguyen, Rhonda E Ries, Soheil Meshinchi, Stefanie Kreutmair, Chiara Alberti, Pavel Sumazin, Richard Aplenc, Michele S Redell, Burkhard Becher, María Rodríguez Martínez","doi":"10.26508/lsa.202402674","DOIUrl":null,"url":null,"abstract":"<p><p>Pediatric acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis and high relapse rate. Current challenges in the identification of immunotherapy targets arise from patient-specific blast immunophenotypes and their change during disease progression. To overcome this, we present a new computational research tool to rapidly identify malignant cells. We generated single-cell flow cytometry profiles of 21 pediatric AML patients with matched samples at diagnosis, remission, and relapse. We coupled a classifier to an autoencoder for anomaly detection and classified malignant blasts with 90% accuracy. Moreover, our method assigns a developmental stage to blasts at the single-cell level, improving current classification approaches based on differentiation of the dominant phenotype. We observed major immunophenotype and developmental stage alterations between diagnosis and relapse. Patients with KMT2A rearrangement had more profound changes in their blast immunophenotypes at relapse compared to patients with other molecular features. Our method provides new insights into the immunophenotypic composition of AML blasts in an unbiased fashion and can help to define immunotherapy targets that might improve personalized AML treatment.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 11","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402674","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pediatric acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis and high relapse rate. Current challenges in the identification of immunotherapy targets arise from patient-specific blast immunophenotypes and their change during disease progression. To overcome this, we present a new computational research tool to rapidly identify malignant cells. We generated single-cell flow cytometry profiles of 21 pediatric AML patients with matched samples at diagnosis, remission, and relapse. We coupled a classifier to an autoencoder for anomaly detection and classified malignant blasts with 90% accuracy. Moreover, our method assigns a developmental stage to blasts at the single-cell level, improving current classification approaches based on differentiation of the dominant phenotype. We observed major immunophenotype and developmental stage alterations between diagnosis and relapse. Patients with KMT2A rearrangement had more profound changes in their blast immunophenotypes at relapse compared to patients with other molecular features. Our method provides new insights into the immunophenotypic composition of AML blasts in an unbiased fashion and can help to define immunotherapy targets that might improve personalized AML treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自动编码器识别小儿急性髓性白血病中的单细胞突变。
小儿急性髓性白血病(AML)是一种侵袭性血癌,预后差且复发率高。目前在确定免疫疗法靶点方面面临的挑战来自于患者特异性的囊泡免疫表型及其在疾病进展过程中的变化。为了克服这一难题,我们提出了一种新的计算研究工具,用于快速识别恶性细胞。我们生成了 21 例小儿急性髓细胞性白血病患者的单细胞流式细胞术图谱,并提供了诊断、缓解和复发时的匹配样本。我们将分类器与自动编码器结合起来进行异常检测,并以 90% 的准确率对恶性突变细胞进行了分类。此外,我们的方法在单细胞水平上为囊泡指定了发育阶段,改进了目前基于显性表型分化的分类方法。我们观察到,在诊断和复发之间,免疫表型和发育阶段发生了重大改变。与具有其他分子特征的患者相比,具有KMT2A重排的患者在复发时其细胞免疫表型发生了更深刻的变化。我们的方法以无偏见的方式为了解急性髓细胞白细胞的免疫表型组成提供了新的视角,有助于确定免疫疗法靶点,从而改善急性髓细胞白细胞的个性化治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
期刊最新文献
FGF7 as an essential mediator for the onset of ankylosing enthesitis related to psoriatic dermatitis. PICH impacts the spindle assembly checkpoint via its DNA translocase and SUMO-interaction activities. Visualisation of Euglena gracilis organelles and cytoskeleton using expansion microscopy. Impaired primitive erythropoiesis and defective vascular development in Trim71-KO embryos. Sustained induction of autophagy enhances survival during prolonged starvation in newt cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1