Anežka Konupková, Priscila Peña-Diaz, Vladimír Hampl
{"title":"Visualisation of <i>Euglena gracilis</i> organelles and cytoskeleton using expansion microscopy.","authors":"Anežka Konupková, Priscila Peña-Diaz, Vladimír Hampl","doi":"10.26508/lsa.202403110","DOIUrl":null,"url":null,"abstract":"<p><p>This article explores the use of expansion microscopy, a technique that enhances resolution in fluorescence microscopy, on the autotrophic protist <i>Euglena gracilis</i> A modified protocol was developed to preserve the cell structures during fixation. Using antibodies against key cytoskeletal and organelle markers, α-tubulin, β-ATPase, and Rubisco activase, the microtubular structures, mitochondria, and chloroplasts were visualised. The organisation of the cytoskeleton corresponded to the findings from electron microscopy while allowing for the visualisation of the flagellar pocket in its entirety and revealing previously unnoticed details. This study offered insights into the shape and development of mitochondria and chloroplasts under varying conditions, such as culture ages and light cycles. This work demonstrated that expansion microscopy is a robust tool for visualising cellular structures in <i>E. gracilis</i>, an organism whose internal structures cannot be stained using standard immunofluorescence because of its complex pellicle. This technique also serves as a complement to electron microscopy, facilitating tomographic reconstructions in a routine fashion.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202403110","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This article explores the use of expansion microscopy, a technique that enhances resolution in fluorescence microscopy, on the autotrophic protist Euglena gracilis A modified protocol was developed to preserve the cell structures during fixation. Using antibodies against key cytoskeletal and organelle markers, α-tubulin, β-ATPase, and Rubisco activase, the microtubular structures, mitochondria, and chloroplasts were visualised. The organisation of the cytoskeleton corresponded to the findings from electron microscopy while allowing for the visualisation of the flagellar pocket in its entirety and revealing previously unnoticed details. This study offered insights into the shape and development of mitochondria and chloroplasts under varying conditions, such as culture ages and light cycles. This work demonstrated that expansion microscopy is a robust tool for visualising cellular structures in E. gracilis, an organism whose internal structures cannot be stained using standard immunofluorescence because of its complex pellicle. This technique also serves as a complement to electron microscopy, facilitating tomographic reconstructions in a routine fashion.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.