{"title":"Research Progress on the Mechanism of Histone Deacetylases in Ferroptosis of Glioma.","authors":"Meng Ma, Xifeng Fei, Dongyi Jiang, Hanchun Chen, Xiangtong Xie, Zhimin Wang, Qiang Huang","doi":"10.3389/or.2024.1432131","DOIUrl":null,"url":null,"abstract":"<p><p>Glioma is the most prevalent primary malignant tumor of the central nervous system. While traditional treatment modalities such as surgical resection, radiotherapy, and chemotherapy have made significant advancements in glioma treatment, the prognosis for glioma patients remains often unsatisfactory. Ferroptosis, a novel form of programmed cell death, plays a crucial role in glioma and is considered to be the most functionally rich programmed cell death process. Histone deacetylases have emerged as a key focus in regulating ferroptosis in glioma. By inhibiting the activity of histone deacetylases, histone deacetylase inhibitors elevate acetylation levels of both histones and non-histone proteins, thereby influencing various cellular processes. Numerous studies have demonstrated that histone deacetylases are implicated in the development of glioma and hold promise for its treatment. This article provides an overview of research progress on the mechanism by which histone deacetylases contribute to ferroptosis in glioma.</p>","PeriodicalId":19487,"journal":{"name":"Oncology Reviews","volume":"18 ","pages":"1432131"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/or.2024.1432131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioma is the most prevalent primary malignant tumor of the central nervous system. While traditional treatment modalities such as surgical resection, radiotherapy, and chemotherapy have made significant advancements in glioma treatment, the prognosis for glioma patients remains often unsatisfactory. Ferroptosis, a novel form of programmed cell death, plays a crucial role in glioma and is considered to be the most functionally rich programmed cell death process. Histone deacetylases have emerged as a key focus in regulating ferroptosis in glioma. By inhibiting the activity of histone deacetylases, histone deacetylase inhibitors elevate acetylation levels of both histones and non-histone proteins, thereby influencing various cellular processes. Numerous studies have demonstrated that histone deacetylases are implicated in the development of glioma and hold promise for its treatment. This article provides an overview of research progress on the mechanism by which histone deacetylases contribute to ferroptosis in glioma.
期刊介绍:
Oncology Reviews is a quarterly peer-reviewed, international journal that publishes authoritative state-of-the-art reviews on preclinical and clinical aspects of oncology. The journal will provide up-to-date information on the latest achievements in different fields of oncology for both practising clinicians and basic researchers. Oncology Reviews aims at being international in scope and readership, as reflected also by its Editorial Board, gathering the world leading experts in both pre-clinical research and everyday clinical practice. The journal is open for publication of supplements, monothematic issues and for publishing abstracts of scientific meetings; conditions can be obtained from the Editor-in-Chief or the publisher.