Twisted cell flow facilitates three-dimensional somite morphogenesis in zebrafish

IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Cells and Development Pub Date : 2024-08-26 DOI:10.1016/j.cdev.2024.203969
Harunobu Kametani , Yue Tong , Atsuko Shimada , Hiroyuki Takeda , Takamichi Sushida , Masakazu Akiyama , Toru Kawanishi
{"title":"Twisted cell flow facilitates three-dimensional somite morphogenesis in zebrafish","authors":"Harunobu Kametani ,&nbsp;Yue Tong ,&nbsp;Atsuko Shimada ,&nbsp;Hiroyuki Takeda ,&nbsp;Takamichi Sushida ,&nbsp;Masakazu Akiyama ,&nbsp;Toru Kawanishi","doi":"10.1016/j.cdev.2024.203969","DOIUrl":null,"url":null,"abstract":"<div><p>Tissue elongation is a fundamental morphogenetic process to construct complex embryonic structures. In zebrafish, somites rapidly elongate in both dorsal and ventral directions, transforming from a cuboidal to a V-shape within a few hours of development. Despite its significance, the cellular behaviors that directly lead to somite elongation have not been examined at single-cell resolution. Here, we describe the motion and shapes of all cells composing the dorsal half of the somite in three-dimensional space using lightsheet microscopy. We identified two types of cell movements—in horizontal and dorsal directions—that occur simultaneously within individual cells, creating a complex, twisted flow of cells during somite elongation. Chemical inhibition of Sdf1 signaling disrupted the collective movement in both directions and inhibited somite elongation, suggesting that Sdf1 signaling is crucial for this cell flow. Furthermore, three-dimensional computational modeling suggested that horizontal cell rotation accelerates the perpendicular elongation of the somite along the dorsoventral axis. Together, our study offers novel insights into the role of collective cell migration in tissue morphogenesis, which proceeds dynamically in the three-dimensional space of the embryo.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"180 ","pages":"Article 203969"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290124000792/pdfft?md5=3bab0e18ddc2792fe0af0f10dde496aa&pid=1-s2.0-S2667290124000792-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290124000792","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue elongation is a fundamental morphogenetic process to construct complex embryonic structures. In zebrafish, somites rapidly elongate in both dorsal and ventral directions, transforming from a cuboidal to a V-shape within a few hours of development. Despite its significance, the cellular behaviors that directly lead to somite elongation have not been examined at single-cell resolution. Here, we describe the motion and shapes of all cells composing the dorsal half of the somite in three-dimensional space using lightsheet microscopy. We identified two types of cell movements—in horizontal and dorsal directions—that occur simultaneously within individual cells, creating a complex, twisted flow of cells during somite elongation. Chemical inhibition of Sdf1 signaling disrupted the collective movement in both directions and inhibited somite elongation, suggesting that Sdf1 signaling is crucial for this cell flow. Furthermore, three-dimensional computational modeling suggested that horizontal cell rotation accelerates the perpendicular elongation of the somite along the dorsoventral axis. Together, our study offers novel insights into the role of collective cell migration in tissue morphogenesis, which proceeds dynamically in the three-dimensional space of the embryo.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扭曲细胞流促进斑马鱼体节的三维形态发生
组织伸长是构建复杂胚胎结构的基本形态发生过程。在斑马鱼中,体节在发育的几个小时内迅速向背腹两个方向伸长,并将其长方体形状转变为 V 形。尽管其意义重大,但直接导致体节伸长的细胞行为尚未以单细胞分辨率进行研究。在这里,我们利用光片显微镜描述了构成体节背半部分的所有细胞在三维空间中的运动和形状。我们发现了在单个细胞内同时发生的两种细胞运动--水平方向和背侧方向,从而在体节伸长过程中形成了复杂、扭曲的细胞流。对Sdf1信号传导的化学抑制破坏了这两个方向的集体运动,并抑制了体节的伸长,这表明Sdf1信号传导对细胞流动至关重要。此外,三维计算模型表明,水平细胞旋转加速了体节沿背腹轴的垂直伸长。总之,我们的研究对细胞集体迁移在组织形态发生中的作用提供了新的见解,而组织形态发生是在胚胎的三维空间中动态进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cells and Development
Cells and Development Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
2.90
自引率
0.00%
发文量
33
审稿时长
41 days
期刊最新文献
LUC7L2 accelerates the growth of liver cancer cells by enhancing DNA damage repair via RRAS Blastoid: The future of human development in the laboratory Emerging therapeutic strategies for Wnt-dependent colon cancer targeting macropinocytosis The evolutionary and mechanical principles shaping the Drosophila embryonic ventral nerve cord Transcriptional regulation of postnatal aortic development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1