Automated Uniform Spheroid Generation Platform for High Throughput Drug Screening Process.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-08-15 DOI:10.3390/bios14080392
Kelvin C C Pong, Yuen Sze Lai, Roy Chi Hang Wong, Alan Chun Kit Lee, Sam C T Chow, Jonathan C W Lam, Ho Pui Ho, Clarence T T Wong
{"title":"Automated Uniform Spheroid Generation Platform for High Throughput Drug Screening Process.","authors":"Kelvin C C Pong, Yuen Sze Lai, Roy Chi Hang Wong, Alan Chun Kit Lee, Sam C T Chow, Jonathan C W Lam, Ho Pui Ho, Clarence T T Wong","doi":"10.3390/bios14080392","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) spheroid models are crucial for cancer research, offering more accurate insights into tumour biology and drug responses than traditional 2D cell cultures. However, inconsistent and low-throughput spheroid production has hindered their application in drug screening. Here, we present an automated high-throughput platform for a spheroid selection, fabrication, and sorting system (SFSS) to produce uniform gelatine-encapsulated spheroids (GESs) with high efficiency. SFSS integrates advanced imaging, analysis, photo-triggered fabrication, and microfluidic sorting to precisely control spheroid size, shape, and viability. Our data demonstrate that our SFSS can produce over 50 GESs with consistent size and circularity in 30 min with over 97% sorting accuracy while maintaining cell viability and structural integrity. We demonstrated that the GESs can be used for drug screening and potentially for various assays. Thus, the SFSS could significantly enhance the efficiency of generating uniform spheroids, facilitating their application in drug development to investigate complex biological systems and drug responses in a more physiologically relevant context.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14080392","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional (3D) spheroid models are crucial for cancer research, offering more accurate insights into tumour biology and drug responses than traditional 2D cell cultures. However, inconsistent and low-throughput spheroid production has hindered their application in drug screening. Here, we present an automated high-throughput platform for a spheroid selection, fabrication, and sorting system (SFSS) to produce uniform gelatine-encapsulated spheroids (GESs) with high efficiency. SFSS integrates advanced imaging, analysis, photo-triggered fabrication, and microfluidic sorting to precisely control spheroid size, shape, and viability. Our data demonstrate that our SFSS can produce over 50 GESs with consistent size and circularity in 30 min with over 97% sorting accuracy while maintaining cell viability and structural integrity. We demonstrated that the GESs can be used for drug screening and potentially for various assays. Thus, the SFSS could significantly enhance the efficiency of generating uniform spheroids, facilitating their application in drug development to investigate complex biological systems and drug responses in a more physiologically relevant context.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高通量药物筛选过程的自动均匀球形体生成平台。
三维(3D)球形模型对癌症研究至关重要,与传统的 2D 细胞培养相比,它能更准确地洞察肿瘤生物学和药物反应。然而,不一致和低通量的球形体生产阻碍了它们在药物筛选中的应用。在这里,我们提出了一种球形体选择、制造和分拣系统(SFSS)的自动化高通量平台,可高效生产均匀的明胶包裹球形体(GES)。SFSS 集成了先进的成像、分析、光触发制造和微流控分选技术,可精确控制球体大小、形状和存活率。我们的数据表明,我们的 SFSS 能在 30 分钟内制造出 50 多个大小和圆度一致的 GES,分选准确率超过 97%,同时还能保持细胞活力和结构完整性。我们证明,GESs 可用于药物筛选和各种潜在检测。因此,SFSS 可以大大提高生成均匀球形体的效率,促进其在药物开发中的应用,从而在更贴近生理的背景下研究复杂的生物系统和药物反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1