Capillary Flow-Based One-Minute Quantification of Amyloid Proteolysis.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-08-19 DOI:10.3390/bios14080400
Taeha Lee, Da Yeon Cheong, Kang Hyun Lee, Jae Hyun You, Jinsung Park, Gyudo Lee
{"title":"Capillary Flow-Based One-Minute Quantification of Amyloid Proteolysis.","authors":"Taeha Lee, Da Yeon Cheong, Kang Hyun Lee, Jae Hyun You, Jinsung Park, Gyudo Lee","doi":"10.3390/bios14080400","DOIUrl":null,"url":null,"abstract":"<p><p>Quantifying the formation and decomposition of amyloid is a crucial issue in the development of new drugs and therapies for treating amyloidosis. The current technologies for grasping amyloid formation and decomposition include fluorescence analysis using thioflavin-T, secondary structure analysis using circular dichroism, and image analysis using atomic force microscopy or transmission electron microscopy. These technologies typically require spectroscopic devices or expensive nanoscale imaging equipment and involve lengthy analysis, which limits the rapid screening of amyloid-degrading drugs. In this study, we introduce a technology for rapidly assessing amyloid decomposition using capillary flow-based paper (CFP). Amyloid solutions exhibit gel-like physical properties due to insoluble denatured polymers, resulting in a shorter flow distance on CFP compared to pure water. Experimental conditions were established to consistently control the flow distance based on a hen-egg-white lysozyme amyloid solution. It was confirmed that as amyloid is decomposed by trypsin, the flow distance increases on the CFP. Our method is highly useful for detecting changes in the gel properties of amyloid solutions within a minute, and we anticipate its use in the rapid, large-scale screening of anti-amyloid agents in the future.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353070/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14080400","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying the formation and decomposition of amyloid is a crucial issue in the development of new drugs and therapies for treating amyloidosis. The current technologies for grasping amyloid formation and decomposition include fluorescence analysis using thioflavin-T, secondary structure analysis using circular dichroism, and image analysis using atomic force microscopy or transmission electron microscopy. These technologies typically require spectroscopic devices or expensive nanoscale imaging equipment and involve lengthy analysis, which limits the rapid screening of amyloid-degrading drugs. In this study, we introduce a technology for rapidly assessing amyloid decomposition using capillary flow-based paper (CFP). Amyloid solutions exhibit gel-like physical properties due to insoluble denatured polymers, resulting in a shorter flow distance on CFP compared to pure water. Experimental conditions were established to consistently control the flow distance based on a hen-egg-white lysozyme amyloid solution. It was confirmed that as amyloid is decomposed by trypsin, the flow distance increases on the CFP. Our method is highly useful for detecting changes in the gel properties of amyloid solutions within a minute, and we anticipate its use in the rapid, large-scale screening of anti-amyloid agents in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于毛细管流的一分钟淀粉样蛋白定量分析
量化淀粉样蛋白的形成和分解是开发治疗淀粉样变性病的新药物和疗法的关键问题。目前掌握淀粉样蛋白形成和分解的技术包括利用硫黄素-T进行荧光分析、利用圆二色性进行二级结构分析以及利用原子力显微镜或透射电子显微镜进行图像分析。这些技术通常需要光谱设备或昂贵的纳米级成像设备,分析时间长,限制了淀粉样蛋白降解药物的快速筛选。在本研究中,我们介绍了一种利用毛细管流纸(CFP)快速评估淀粉样蛋白分解的技术。由于淀粉样蛋白溶液具有不溶性变性聚合物的凝胶状物理性质,因此与纯水相比,淀粉样蛋白溶液在 CFP 上的流动距离较短。基于鸡卵白溶菌酶淀粉溶液,建立了持续控制流动距离的实验条件。实验证实,当淀粉样蛋白被胰蛋白酶分解时,在 CFP 上的流动距离会增加。我们的方法对于在一分钟内检测淀粉样蛋白溶液凝胶性质的变化非常有用,我们期待它将来能用于抗淀粉样蛋白药物的快速、大规模筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1