High Stability and Low Power Nanometric Bio-Objects Trapping through Dielectric-Plasmonic Hybrid Nanobowtie.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-08-13 DOI:10.3390/bios14080390
Paola Colapietro, Giuseppe Brunetti, Annarita di Toma, Francesco Ferrara, Maria Serena Chiriacò, Caterina Ciminelli
{"title":"High Stability and Low Power Nanometric Bio-Objects Trapping through Dielectric-Plasmonic Hybrid Nanobowtie.","authors":"Paola Colapietro, Giuseppe Brunetti, Annarita di Toma, Francesco Ferrara, Maria Serena Chiriacò, Caterina Ciminelli","doi":"10.3390/bios14080390","DOIUrl":null,"url":null,"abstract":"<p><p>Micro and nano-scale manipulation of living matter is crucial in biomedical applications for diagnostics and pharmaceuticals, facilitating disease study, drug assessment, and biomarker identification. Despite advancements, trapping biological nanoparticles remains challenging. Nanotweezer-based strategies, including dielectric and plasmonic configurations, show promise due to their efficiency and stability, minimizing damage without direct contact. Our study uniquely proposes an inverted hybrid dielectric-plasmonic nanobowtie designed to overcome the primary limitations of existing dielectric-plasmonic systems, such as high costs and manufacturing complexity. This novel configuration offers significant advantages for the stable and long-term trapping of biological objects, including strong energy confinement with reduced thermal effects. The metal's efficient light reflection capability results in a significant increase in energy field confinement (EC) within the trapping site, achieving an enhancement of over 90% compared to the value obtained with the dielectric nanobowtie. Numerical simulations confirm the successful trapping of 100 nm viruses, demonstrating a trapping stability greater than 10 and a stiffness of 2.203 fN/nm. This configuration ensures optical forces of approximately 2.96 fN with an input power density of 10 mW/μm<sup>2</sup> while preserving the temperature, chemical-biological properties, and shape of the biological sample.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14080390","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Micro and nano-scale manipulation of living matter is crucial in biomedical applications for diagnostics and pharmaceuticals, facilitating disease study, drug assessment, and biomarker identification. Despite advancements, trapping biological nanoparticles remains challenging. Nanotweezer-based strategies, including dielectric and plasmonic configurations, show promise due to their efficiency and stability, minimizing damage without direct contact. Our study uniquely proposes an inverted hybrid dielectric-plasmonic nanobowtie designed to overcome the primary limitations of existing dielectric-plasmonic systems, such as high costs and manufacturing complexity. This novel configuration offers significant advantages for the stable and long-term trapping of biological objects, including strong energy confinement with reduced thermal effects. The metal's efficient light reflection capability results in a significant increase in energy field confinement (EC) within the trapping site, achieving an enhancement of over 90% compared to the value obtained with the dielectric nanobowtie. Numerical simulations confirm the successful trapping of 100 nm viruses, demonstrating a trapping stability greater than 10 and a stiffness of 2.203 fN/nm. This configuration ensures optical forces of approximately 2.96 fN with an input power density of 10 mW/μm2 while preserving the temperature, chemical-biological properties, and shape of the biological sample.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过介电-质子混合纳米蝶翼实现高稳定性和低功耗纳米生物物体捕获。
在诊断和制药的生物医学应用中,微米和纳米尺度的生物物质操作至关重要,有助于疾病研究、药物评估和生物标记物鉴定。尽管取得了进步,但捕获生物纳米粒子仍具有挑战性。基于纳米镊子的策略,包括介电和等离子配置,因其高效性和稳定性,在不直接接触的情况下最大限度地减少了损害,而显示出前景。我们的研究独特地提出了一种倒置混合介电-质子纳米镊子,旨在克服现有介电-质子系统的主要局限性,如成本高和制造复杂性。这种新颖的配置为长期稳定地捕获生物物体提供了显著优势,包括强能量约束和减少热效应。金属的高效光反射能力显著提高了捕获点内的能量场约束(EC),与电介质纳米钮带相比,EC 增强了 90% 以上。数值模拟证实了 100 纳米病毒的成功捕获,捕获稳定性大于 10,刚度为 2.203 fN/nm。这种配置可确保在输入功率密度为 10 mW/μm2 时产生约 2.96 fN 的光学力,同时保持生物样本的温度、化学生物特性和形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1