Petra Cazzanelli, Mikkael Lamoca, Johannes Hasler, Oliver Nic Hausmann, Addisu Mesfin, Varun Puvanesarajah, Wolfgang Hitzl, Karin Wuertz-Kozak
{"title":"The role of miR-155-5p in inflammation and mechanical loading during intervertebral disc degeneration.","authors":"Petra Cazzanelli, Mikkael Lamoca, Johannes Hasler, Oliver Nic Hausmann, Addisu Mesfin, Varun Puvanesarajah, Wolfgang Hitzl, Karin Wuertz-Kozak","doi":"10.1186/s12964-024-01803-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intervertebral disc (IVD) degeneration is a multifactorial pathological process resulting in the dysregulation of IVD cell activity. The catabolic shift observed in IVD cells during degeneration leads to increased inflammation, extracellular matrix (ECM) degradation, aberrant intracellular signaling and cell loss. Importantly, these pathological processes are known to be interconnected and to collectively contribute to the progression of the disease. MicroRNAs (miRNAs) are known as strong post-transcriptional regulators, targeting multiple genes simultaneously and regulating numerous intracellular pathways. Specifically, miR-155-5p has been of particular interest since it is known as a pro-inflammatory mediator and contributing factor to diseases like cancer and osteoarthritis. This study investigated the role of miR-155-5p in IVD degeneration with a specific focus on inflammation and mechanosensing.</p><p><strong>Methods: </strong>Gain- and loss-of-function studies were performed through transfection of human Nucleus pulposus (NP) and Annulus fibrosus (AF) cells isolated from degenerated IVDs with miR-155-5p mimics, inhibitors or their corresponding non-targeting control. Transfected cells were then subjected to an inflammatory environment or mechanical loading. Conditioned media and cell lysates were collected for phosphorylation and cytokine secretion arrays as well as gene expression analysis.</p><p><strong>Results: </strong>Increased expression of miR-155-5p in AF cells resulted in significant upregulation of interleukin (IL)-8 cytokine secretion during cyclic stretching and a similar trend in IL-6 secretion during inflammation. Furthermore, miR-155-5p mimics increased the expression of the brain-derived neurotrophic factor (BDNF) in AF cells undergoing cyclic stretching. In NP cells, miR-155-5p gain-of-function resulted in the activation of the mitogen-activated protein kinase (MAPK) signaling pathway through increased phosphorylation of p38 and p53. Lastly, miR-155-5p inhibition caused a significant increase in the anti-inflammatory cytokine IL-10 in AF cells and the tissue inhibitor of metalloproteinases (TIMP)-4 in NP cells respectively.</p><p><strong>Conclusion: </strong>Overall, these results show that miR-155-5p contributes to IVD degeneration by enhancing inflammation through pro-inflammatory cytokines and MAPK signaling, as well as by promoting the catabolic shift of AF cells during mechanical loading. The inhibition of miR-155-5p may constitute a potential therapeutic approach for IVD degeneration and low back pain.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351051/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01803-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Intervertebral disc (IVD) degeneration is a multifactorial pathological process resulting in the dysregulation of IVD cell activity. The catabolic shift observed in IVD cells during degeneration leads to increased inflammation, extracellular matrix (ECM) degradation, aberrant intracellular signaling and cell loss. Importantly, these pathological processes are known to be interconnected and to collectively contribute to the progression of the disease. MicroRNAs (miRNAs) are known as strong post-transcriptional regulators, targeting multiple genes simultaneously and regulating numerous intracellular pathways. Specifically, miR-155-5p has been of particular interest since it is known as a pro-inflammatory mediator and contributing factor to diseases like cancer and osteoarthritis. This study investigated the role of miR-155-5p in IVD degeneration with a specific focus on inflammation and mechanosensing.
Methods: Gain- and loss-of-function studies were performed through transfection of human Nucleus pulposus (NP) and Annulus fibrosus (AF) cells isolated from degenerated IVDs with miR-155-5p mimics, inhibitors or their corresponding non-targeting control. Transfected cells were then subjected to an inflammatory environment or mechanical loading. Conditioned media and cell lysates were collected for phosphorylation and cytokine secretion arrays as well as gene expression analysis.
Results: Increased expression of miR-155-5p in AF cells resulted in significant upregulation of interleukin (IL)-8 cytokine secretion during cyclic stretching and a similar trend in IL-6 secretion during inflammation. Furthermore, miR-155-5p mimics increased the expression of the brain-derived neurotrophic factor (BDNF) in AF cells undergoing cyclic stretching. In NP cells, miR-155-5p gain-of-function resulted in the activation of the mitogen-activated protein kinase (MAPK) signaling pathway through increased phosphorylation of p38 and p53. Lastly, miR-155-5p inhibition caused a significant increase in the anti-inflammatory cytokine IL-10 in AF cells and the tissue inhibitor of metalloproteinases (TIMP)-4 in NP cells respectively.
Conclusion: Overall, these results show that miR-155-5p contributes to IVD degeneration by enhancing inflammation through pro-inflammatory cytokines and MAPK signaling, as well as by promoting the catabolic shift of AF cells during mechanical loading. The inhibition of miR-155-5p may constitute a potential therapeutic approach for IVD degeneration and low back pain.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.