Topology Optimization Driven Bone-Remodeling Simulation for Lumbar Interbody Fusion.

IF 1.7 4区 医学 Q4 BIOPHYSICS Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-12-01 DOI:10.1115/1.4066369
Zuowei Wang, Weisheng Zhang, Yao Meng, Zhe Xiao, Yue Mei
{"title":"Topology Optimization Driven Bone-Remodeling Simulation for Lumbar Interbody Fusion.","authors":"Zuowei Wang, Weisheng Zhang, Yao Meng, Zhe Xiao, Yue Mei","doi":"10.1115/1.4066369","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a numerical approach for simulating bone remodeling in lumbar interbody fusion (LIF). It employs a topology optimization method to drive the remodeling process and uses a pixel function to describe the structural topology and bone density distribution. Unlike traditional approaches based on strain energy density or compliance, this study adopts von Mises stress to guide the remodeling of LIF. A novel pixel interpolation scheme associated with stress criteria is applied to the physical properties of the bone, directly addressing the stress shielding effect caused by the implanted cage, which significantly influences the bone remodeling outcome in LIF. Additionally, a boundary inverse approach is utilized to reconstruct a simplified analysis model. To reduce computational cost while maintaining high structural resolution and accuracy, the scaled boundary finite element method (SBFEM) is introduced. The proposed numerical approach successfully generates results that closely resemble human lumbar interbody fusion.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4066369","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a numerical approach for simulating bone remodeling in lumbar interbody fusion (LIF). It employs a topology optimization method to drive the remodeling process and uses a pixel function to describe the structural topology and bone density distribution. Unlike traditional approaches based on strain energy density or compliance, this study adopts von Mises stress to guide the remodeling of LIF. A novel pixel interpolation scheme associated with stress criteria is applied to the physical properties of the bone, directly addressing the stress shielding effect caused by the implanted cage, which significantly influences the bone remodeling outcome in LIF. Additionally, a boundary inverse approach is utilized to reconstruct a simplified analysis model. To reduce computational cost while maintaining high structural resolution and accuracy, the scaled boundary finite element method (SBFEM) is introduced. The proposed numerical approach successfully generates results that closely resemble human lumbar interbody fusion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拓扑优化驱动的腰椎椎间融合骨重塑模拟
本研究提出了一种模拟腰椎椎间融合术(LIF)骨重塑的数值方法。它采用拓扑优化方法来驱动重塑过程,并使用像素函数来描述结构拓扑和骨密度分布。与基于应变能密度或顺应性的传统方法不同,该研究采用冯米塞斯应力来指导 LIF 的重塑。一种与应力标准相关的新颖像素插值方案被应用到骨的物理特性中,直接解决了植入骨笼引起的应力屏蔽效应,该效应对 LIF 的骨重塑结果有显著影响。此外,还利用边界反演方法重建了简化分析模型。为了在保持高结构分辨率和精确度的同时降低计算成本,引入了比例边界有限元法(SBFEM)。所提出的数值方法成功地生成了与人体腰椎椎间融合非常相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
期刊最新文献
Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves. Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory. A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin. Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired. Topology Optimization Driven Bone-Remodeling Simulation for Lumbar Interbody Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1