Lutz Hammer, Alexandra Schewski, Alexander Wegerich, Tilman Kißlinger, M. Alexander Schneider
{"title":"LEED-IV analyses of tellurium adsorbate structures on iridium and gold surfaces","authors":"Lutz Hammer, Alexandra Schewski, Alexander Wegerich, Tilman Kißlinger, M. Alexander Schneider","doi":"10.1016/j.susc.2024.122589","DOIUrl":null,"url":null,"abstract":"<div><p>The determination of the configuration of atomic adsorbates on clean metal surfaces has been a key issue in surface science 60 years ago and still is today. We demonstrate that despite the prevalence of combined scanning tunneling microscopy and density functional theory studies of adsorbate systems the pitfalls are plentiful calling for accurate, reliable structure analyses that can be delivered by diffraction methods. We analyze and compare the ordered phases of Te on Ir(111), Ir(100), and Au(100) demonstrating the accuracy, the in-depth information and physical insight that can nowadays be obtained by quantitative low-energy electron diffraction structural analyses.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122589"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001407/pdfft?md5=5d2e604f0131a149fd704b2f9ee5a739&pid=1-s2.0-S0039602824001407-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001407","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The determination of the configuration of atomic adsorbates on clean metal surfaces has been a key issue in surface science 60 years ago and still is today. We demonstrate that despite the prevalence of combined scanning tunneling microscopy and density functional theory studies of adsorbate systems the pitfalls are plentiful calling for accurate, reliable structure analyses that can be delivered by diffraction methods. We analyze and compare the ordered phases of Te on Ir(111), Ir(100), and Au(100) demonstrating the accuracy, the in-depth information and physical insight that can nowadays be obtained by quantitative low-energy electron diffraction structural analyses.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.