M.A. Aberoumand , M. Sasani Ghamsari , M.H. Majles Ara
{"title":"The impact of lithium concentration on the optical properties of colloidal ZnO nanocrystals","authors":"M.A. Aberoumand , M. Sasani Ghamsari , M.H. Majles Ara","doi":"10.1016/j.rio.2024.100733","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, Li-doped ZnO nanocrystals (LZO) were synthesized via the sol–gel method. The concentration of zinc acetate has been set at 2 M in order to prepare the highly concentrated Li-doped ZnO sol. The generated LZO sol’s optical characteristics were assessed using UV–visible absorption and photoluminescence spectroscopy, while the ZnO nanopowders’ lithium doping process was assessed using XRD and Raman spectroscopy. The experimental findings indicate that the concentration of Li<sup>+</sup> ions in the synthesized zinc oxide nanocrystals has reached the maximum solid solubility limit. The inclusion of Li<sup>+</sup> ions results in a reduction in the size of ZnO nanocrystals, accompanied by a notable increase in violet-blue emission, distinguishing them from other materials reported in the literature. As can be found, Li<sup>+</sup> ions cannot change the type of conductivity in thin ZnO films, and they have n-type conductivity.</p></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666950124001305/pdfft?md5=a77c64978b41784e95e1941945c684a0&pid=1-s2.0-S2666950124001305-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124001305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, Li-doped ZnO nanocrystals (LZO) were synthesized via the sol–gel method. The concentration of zinc acetate has been set at 2 M in order to prepare the highly concentrated Li-doped ZnO sol. The generated LZO sol’s optical characteristics were assessed using UV–visible absorption and photoluminescence spectroscopy, while the ZnO nanopowders’ lithium doping process was assessed using XRD and Raman spectroscopy. The experimental findings indicate that the concentration of Li+ ions in the synthesized zinc oxide nanocrystals has reached the maximum solid solubility limit. The inclusion of Li+ ions results in a reduction in the size of ZnO nanocrystals, accompanied by a notable increase in violet-blue emission, distinguishing them from other materials reported in the literature. As can be found, Li+ ions cannot change the type of conductivity in thin ZnO films, and they have n-type conductivity.