A self-sustaining effect induced by iron sulfide generation and reuse in pyrite-woodchip mixotrophic bioretention systems: An experimental and modeling study

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2024-08-23 DOI:10.1016/j.watres.2024.122311
{"title":"A self-sustaining effect induced by iron sulfide generation and reuse in pyrite-woodchip mixotrophic bioretention systems: An experimental and modeling study","authors":"","doi":"10.1016/j.watres.2024.122311","DOIUrl":null,"url":null,"abstract":"<div><p>Dual electron donor bioretention systems have emerged as a popular strategy to enhance dissolved nitrogen removal from stormwater runoff. Pyrite-woodchip mixotrophic bioretention systems showed a promoted and stabilized removal of dissolved nutrients under complex rainfall conditions, but the sulfate reduction process that can induce iron sulfide generation and reuse was overlooked. In this study, experiments and models were applied to investigate the effects of filler configuration and dissolved organic carbon (DOC) dissolution rate on treatment performance and iron sulfide generation in pyrite-woodchip bioretention systems. Key parameters govern that DOC dissolution and microbe-mediated processes were obtained by experiments. The water quality models that integrate one-dimensional constant flow, sorption and microbial transformation kinetics were used to predict the performance of bioretention systems. Results showed that the mixotrophic bioretention system with woodchip mixed in the vadose zone and pyrite in the saturated zone achieves a better performance in both nitrogen removal efficiency and by-product control. Comparably, woodchip and pyrite mixed in the saturated zone could encounter a high secondary pollution risk. The sensitivity coefficients of oxic/anoxic DOC dissolution rates to total nitrogen removal are 0.36 and -2.43 respectively. Iron sulfide generation was affected by DOC distribution and the competition between heterotrophic denitrifiers, autotrophic denitrifiers, and sulfate-reducing bacteria (SRB). DOC accumulation has an antagonistic effect on iron production and sulfate reduction. Extra DOC accumulation favors sulfate reduction while high DOC concentration inhibits pyrite-based denitrification and reduces Fe(III) production. The recycling of iron sulfide can improve the robustness and sustainability of bioretention systems.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424012107","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dual electron donor bioretention systems have emerged as a popular strategy to enhance dissolved nitrogen removal from stormwater runoff. Pyrite-woodchip mixotrophic bioretention systems showed a promoted and stabilized removal of dissolved nutrients under complex rainfall conditions, but the sulfate reduction process that can induce iron sulfide generation and reuse was overlooked. In this study, experiments and models were applied to investigate the effects of filler configuration and dissolved organic carbon (DOC) dissolution rate on treatment performance and iron sulfide generation in pyrite-woodchip bioretention systems. Key parameters govern that DOC dissolution and microbe-mediated processes were obtained by experiments. The water quality models that integrate one-dimensional constant flow, sorption and microbial transformation kinetics were used to predict the performance of bioretention systems. Results showed that the mixotrophic bioretention system with woodchip mixed in the vadose zone and pyrite in the saturated zone achieves a better performance in both nitrogen removal efficiency and by-product control. Comparably, woodchip and pyrite mixed in the saturated zone could encounter a high secondary pollution risk. The sensitivity coefficients of oxic/anoxic DOC dissolution rates to total nitrogen removal are 0.36 and -2.43 respectively. Iron sulfide generation was affected by DOC distribution and the competition between heterotrophic denitrifiers, autotrophic denitrifiers, and sulfate-reducing bacteria (SRB). DOC accumulation has an antagonistic effect on iron production and sulfate reduction. Extra DOC accumulation favors sulfate reduction while high DOC concentration inhibits pyrite-based denitrification and reduces Fe(III) production. The recycling of iron sulfide can improve the robustness and sustainability of bioretention systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄铁矿-木屑混合营养生物滞留系统中硫化铁的生成和再利用引起的自持效应:实验和模型研究
双电子供体生物滞留系统已成为提高雨水径流中溶解氮去除率的流行策略。在复杂的降雨条件下,黄铁矿木片混合营养生物滞留系统对溶解营养物的去除起到了促进和稳定的作用,但人们忽视了硫酸盐还原过程会导致硫化铁的生成和再利用。本研究通过实验和模型研究了填料配置和溶解有机碳(DOC)溶解速率对黄铁矿木屑生物滞留系统处理性能和硫化铁生成的影响。通过实验获得了控制溶解有机碳和微生物介导过程的关键参数。利用整合了一维恒定流、吸附和微生物转化动力学的水质模型来预测生物滞留系统的性能。结果表明,在渗流区混合木屑、饱和区混合黄铁矿的混养生物滞留系统在脱氮效率和副产物控制方面都有更好的表现。相比之下,在饱和带混合木屑和黄铁矿可能会遇到较高的二次污染风险。缺氧/缺氧 DOC 溶解率对总氮去除率的敏感系数分别为 0.36 和 -2.43。硫化铁的生成受 DOC 分布以及异养反硝化菌、自养反硝化菌和硫酸盐还原菌(SRB)之间竞争的影响。DOC 积累对铁生成和硫酸盐还原具有拮抗作用。DOC 积累过多有利于硫酸盐还原,而 DOC 浓度过高则会抑制黄铁矿反硝化作用并减少铁(III)的生成。硫化铁的循环利用可以提高生物滞留系统的稳健性和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Pilot-scale experimental study on the enhanced natural attenuation of complex organic contaminants based on the recharge of electron acceptors Predicting flushed wet wipe emissions into rivers Integrated urban wastewater management through on-site generation and application of ferrous carbonate Spatial model of groundwater contamination risks from pit-latrines in a low-income country Boosting lithium/magnesium separation performance of selective electrodialysis membranes regulated by enamine reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1