A machine learning approach for estimating snow depth across the European Alps from Sentinel-1 imagery

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-08-27 DOI:10.1016/j.rse.2024.114369
{"title":"A machine learning approach for estimating snow depth across the European Alps from Sentinel-1 imagery","authors":"","doi":"10.1016/j.rse.2024.114369","DOIUrl":null,"url":null,"abstract":"<div><p>Seasonal snow plays a crucial role in society and understanding trends in snow depth and mass is essential for making informed decisions about water resources and adaptation to climate change. However, quantifying snow depth in remote, mountainous areas with complex topography remains a significant challenge. The increasing availability of high-resolution synthetic aperture radar (SAR) observations from active microwave satellites has prompted opportunistic use of the data to retrieve snow depth remotely across large spatial and frequent temporal scales and at a high spatial resolution. Nevertheless, these novel SAR-based snow depth retrieval methods face their own set of limitations, including challenges for shallow snowpacks, high vegetation cover, and wet snow conditions. In response, here we introduce a machine learning approach to enhance SAR-based snow depth estimation over the European Alps. By integrating Sentinel-1 SAR imagery, optical snow cover observations, and topographic, forest cover and snow class information, our machine learning retrieval method more accurately estimates snow depth at independent in-situ measurement sites than current methods. Further, our method provides estimates at 100 m horizontal resolution and is capable of better capturing local-scale topography-driven snow depth variability. Through detailed feature importance analysis, we identify optimal conditions for SAR data utilization, thereby providing insight into future use of C-band SAR for snow depth retrieval.</p></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003442572400395X/pdfft?md5=e1cd445e0123b69e2281c8def9aa4e64&pid=1-s2.0-S003442572400395X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003442572400395X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seasonal snow plays a crucial role in society and understanding trends in snow depth and mass is essential for making informed decisions about water resources and adaptation to climate change. However, quantifying snow depth in remote, mountainous areas with complex topography remains a significant challenge. The increasing availability of high-resolution synthetic aperture radar (SAR) observations from active microwave satellites has prompted opportunistic use of the data to retrieve snow depth remotely across large spatial and frequent temporal scales and at a high spatial resolution. Nevertheless, these novel SAR-based snow depth retrieval methods face their own set of limitations, including challenges for shallow snowpacks, high vegetation cover, and wet snow conditions. In response, here we introduce a machine learning approach to enhance SAR-based snow depth estimation over the European Alps. By integrating Sentinel-1 SAR imagery, optical snow cover observations, and topographic, forest cover and snow class information, our machine learning retrieval method more accurately estimates snow depth at independent in-situ measurement sites than current methods. Further, our method provides estimates at 100 m horizontal resolution and is capable of better capturing local-scale topography-driven snow depth variability. Through detailed feature importance analysis, we identify optimal conditions for SAR data utilization, thereby providing insight into future use of C-band SAR for snow depth retrieval.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从哨兵-1 图像估算欧洲阿尔卑斯山积雪深度的机器学习方法
季节性积雪在社会中发挥着至关重要的作用,了解积雪深度和质量的变化趋势对于做出有关水资源和适应气候变化的明智决策至关重要。然而,对地形复杂的偏远山区的积雪深度进行量化仍然是一项重大挑战。有源微波卫星提供的高分辨率合成孔径雷达(SAR)观测数据越来越多,这促使人们不失时机地利用这些数据,以高空间分辨率远程检索大空间尺度和频繁时间尺度的积雪深度。然而,这些基于合成孔径雷达的新型雪深检索方法也面临着自身的一系列局限性,包括对浅积雪、高植被覆盖和湿雪条件的挑战。为此,我们在此介绍一种机器学习方法,以增强基于合成孔径雷达的欧洲阿尔卑斯山雪深估算。通过整合 Sentinel-1 SAR 图像、光学积雪观测数据以及地形、森林覆盖和积雪等级信息,我们的机器学习检索方法能比现有方法更准确地估算出独立原地测量点的积雪深度。此外,我们的方法还能提供 100 米水平分辨率的估算值,并能更好地捕捉局部尺度地形导致的雪深变化。通过详细的特征重要性分析,我们确定了利用合成孔径雷达数据的最佳条件,从而为未来利用 C 波段合成孔径雷达进行雪深检索提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Satellite-based estimation of monthly mean hourly 1-km urban air temperature using a diurnal temperature cycle model Towards robust validation strategies for EO flood maps Observation-based quantification of aerosol transport using optical flow: A satellite perspective to characterize interregional transport of atmospheric pollution TIRVolcH: Thermal Infrared Recognition of Volcanic Hotspots. A single band TIR-based algorithm to detect low-to-high thermal anomalies in volcanic regions. Stability of cloud detection methods for Land Surface Temperature (LST) Climate Data Records (CDRs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1