Sewook Oh , Sunghun Kim , Jong-eun Lee , Bo-yong Park , Ji Hye Won , Hyunjin Park
{"title":"Multimodal analysis of disease onset in Alzheimer’s disease using Connectome, Molecular, and genetics data","authors":"Sewook Oh , Sunghun Kim , Jong-eun Lee , Bo-yong Park , Ji Hye Won , Hyunjin Park","doi":"10.1016/j.nicl.2024.103660","DOIUrl":null,"url":null,"abstract":"<div><p>Alzheimer’s disease (AD) and its related age at onset (AAO) are highly heterogeneous, due to the inherent complexity of the disease. They are affected by multiple factors, such as neuroimaging and genetic predisposition. Multimodal integration of various data types is necessary; however, it has been nontrivial due to the high dimensionality of each modality. We aimed to identify multimodal biomarkers of AAO in AD using an extended version of sparse canonical correlation analysis, in which we integrated two imaging modalities, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), and genetic data in the form of single-nucleotide polymorphisms (SNPs) obtained from the Alzheimer’s disease neuroimaging initiative database. These three modalities cover low-to-high-level complementary information and offer multiscale insights into the AAO. We identified multivariate markers of AAO in AD using fMRI, PET, and SNP. Furthermore, the markers identified were largely consistent with those reported in the existing literature. In particular, our serial mediation analysis suggests that genetic variants influence the AAO in AD by indirectly affecting brain connectivity by mediation of amyloid-beta protein accumulation, supporting a plausible path in existing research. Our approach provides comprehensive biomarkers related to AAO in AD and offers novel multimodal insights into AD.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"43 ","pages":"Article 103660"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213158224000998/pdfft?md5=14a71181e22529140c4fb03a2150908a&pid=1-s2.0-S2213158224000998-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158224000998","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) and its related age at onset (AAO) are highly heterogeneous, due to the inherent complexity of the disease. They are affected by multiple factors, such as neuroimaging and genetic predisposition. Multimodal integration of various data types is necessary; however, it has been nontrivial due to the high dimensionality of each modality. We aimed to identify multimodal biomarkers of AAO in AD using an extended version of sparse canonical correlation analysis, in which we integrated two imaging modalities, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), and genetic data in the form of single-nucleotide polymorphisms (SNPs) obtained from the Alzheimer’s disease neuroimaging initiative database. These three modalities cover low-to-high-level complementary information and offer multiscale insights into the AAO. We identified multivariate markers of AAO in AD using fMRI, PET, and SNP. Furthermore, the markers identified were largely consistent with those reported in the existing literature. In particular, our serial mediation analysis suggests that genetic variants influence the AAO in AD by indirectly affecting brain connectivity by mediation of amyloid-beta protein accumulation, supporting a plausible path in existing research. Our approach provides comprehensive biomarkers related to AAO in AD and offers novel multimodal insights into AD.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.