{"title":"Contrastive prototype network with prototype augmentation for few-shot classification","authors":"","doi":"10.1016/j.ins.2024.121372","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, metric-based meta-learning methods have received widespread attention because of their effectiveness in solving few-shot classification problems. However, the scarcity of data frequently results in suboptimal embeddings, causing a discrepancy between anticipated class prototypes and those derived from the support set. These problems severely limit the generalizability of such methods, necessitating further development of Few-Shot Learning (FSL). In this study, we propose the Contrastive Prototype Network (CPN) consisting of three components: (1) Contrastive learning proposed as an auxiliary path to reduce the distance between homogeneous samples and amplify the differences between heterogeneous samples, thereby enhancing the effectiveness and quality of embeddings; (2) A pseudo-prototype strategy proposed to address the bias in prototypes, whereby the pseudo prototypes generated using query set samples are integrated with the initial prototypes to obtain more representative prototypes; (3) A new data augmentation technique, mixupPatch, introduced to alleviate the issue of insufficient data samples, whereby enhanced images are generated by blending the images and labels from different samples, to increase the number of samples. Extensive experiments and ablation studies conducted on five datasets demonstrated that CPN achieves robust results against recent solutions.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524012866","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, metric-based meta-learning methods have received widespread attention because of their effectiveness in solving few-shot classification problems. However, the scarcity of data frequently results in suboptimal embeddings, causing a discrepancy between anticipated class prototypes and those derived from the support set. These problems severely limit the generalizability of such methods, necessitating further development of Few-Shot Learning (FSL). In this study, we propose the Contrastive Prototype Network (CPN) consisting of three components: (1) Contrastive learning proposed as an auxiliary path to reduce the distance between homogeneous samples and amplify the differences between heterogeneous samples, thereby enhancing the effectiveness and quality of embeddings; (2) A pseudo-prototype strategy proposed to address the bias in prototypes, whereby the pseudo prototypes generated using query set samples are integrated with the initial prototypes to obtain more representative prototypes; (3) A new data augmentation technique, mixupPatch, introduced to alleviate the issue of insufficient data samples, whereby enhanced images are generated by blending the images and labels from different samples, to increase the number of samples. Extensive experiments and ablation studies conducted on five datasets demonstrated that CPN achieves robust results against recent solutions.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.