Design and passability study of soil-plowing wheel facing soft terrain

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Journal of Terramechanics Pub Date : 2024-08-27 DOI:10.1016/j.jterra.2024.101002
Xinju Dong , Jingfu Jin , Zhicheng Jia , Yingchun Qi , Tingkun Chen , Lianbin He , Meng Zou
{"title":"Design and passability study of soil-plowing wheel facing soft terrain","authors":"Xinju Dong ,&nbsp;Jingfu Jin ,&nbsp;Zhicheng Jia ,&nbsp;Yingchun Qi ,&nbsp;Tingkun Chen ,&nbsp;Lianbin He ,&nbsp;Meng Zou","doi":"10.1016/j.jterra.2024.101002","DOIUrl":null,"url":null,"abstract":"<div><p>On soft terrain, the rover wheels are easy to slip, sink, or even fail to move. This paper designs a soil-plowing wheel which is two-sided closed and without tread. The discrete element simulation shows that the wheel could grasp soil through both sides and plowing soil and that the ability to gain drawbar pull is not significantly reduced. The wheel is fabricated and tested to measure its sinkage, slip rate and drawbar pull. The wheel has high sinking, high slip and high drawbar pull. And the wheel is tested to verify the passability on five terrains of flat ground, climbing, out of sinkage, obstacle crossing and hard ground. The wheel exhibits good passability in all terrains. The soil-plowing wheel is tested verify the passability on three terrains of obstacle crossing, out of sinkage and climbing and using a three-rockers six-wheels rover. The wheel can pass through all terrain. More importantly, the wheel has an excellent ability to get out of sinkage. And it takes only 25.43 s for all six wheels to get out of sinkage. It is believed that the structure and test results of this wheel are valuable for the subsequent development of unmanned rover wheel.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"117 ","pages":"Article 101002"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022489824000442/pdfft?md5=2ff0e859f365afaf73ed25d7101a338f&pid=1-s2.0-S0022489824000442-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000442","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

On soft terrain, the rover wheels are easy to slip, sink, or even fail to move. This paper designs a soil-plowing wheel which is two-sided closed and without tread. The discrete element simulation shows that the wheel could grasp soil through both sides and plowing soil and that the ability to gain drawbar pull is not significantly reduced. The wheel is fabricated and tested to measure its sinkage, slip rate and drawbar pull. The wheel has high sinking, high slip and high drawbar pull. And the wheel is tested to verify the passability on five terrains of flat ground, climbing, out of sinkage, obstacle crossing and hard ground. The wheel exhibits good passability in all terrains. The soil-plowing wheel is tested verify the passability on three terrains of obstacle crossing, out of sinkage and climbing and using a three-rockers six-wheels rover. The wheel can pass through all terrain. More importantly, the wheel has an excellent ability to get out of sinkage. And it takes only 25.43 s for all six wheels to get out of sinkage. It is believed that the structure and test results of this wheel are valuable for the subsequent development of unmanned rover wheel.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向软地形的土壤耕作轮的设计和通过性研究
在松软的地形上,漫游车轮容易打滑、下沉,甚至无法移动。本文设计了一种两面封闭、无胎面的犁土轮。离散元仿真表明,该车轮可以通过两侧抓取土壤并耕作土壤,而且获得牵引力的能力并没有明显下降。对车轮进行了制造和测试,以测量其下沉量、滑移率和牵引力。车轮具有高下沉率、高滑移率和高牵引力。对车轮进行了测试,以验证其在平地、爬坡、下沉、障碍穿越和硬地五种地形上的通过性。车轮在所有地形都表现出良好的通过性。使用三摇臂六轮漫游车对土壤耕作车轮进行了测试,以验证其在跨越障碍、下沉和爬坡三种地形上的通过性。车轮可以通过所有地形。更重要的是,车轮具有出色的脱困能力。六个车轮摆脱下沉仅需 25.43 秒。相信该车轮的结构和测试结果对无人车车轮的后续开发具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
期刊最新文献
Acoustic winter terrain classification for offroad autonomous vehicles Investigation of steer preview methods to improve predictive control methods on off-road vehicles with realistic actuator delays Comparison of selected tire-terrain interaction models from the aspect of accuracy and computational intensity Simulation of cohesive-frictional artificial soil-to-blade interactions using an elasto-plastic discrete element model with stress-dependent cohesion Modelling and simulation fundamentals in design for ground vehicle mobility Part II: Western approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1