Jae-Seon Yu, Serang Jung, Jin-Woo Cho, Geon-Tae Park, Mikhail Kats, Sun-Kyung Kim, Eungkyu Lee
{"title":"Ultrathin Ge-YF3 antireflective coating with 0.5 % reflectivity on high-index substrate for long-wavelength infrared cameras","authors":"Jae-Seon Yu, Serang Jung, Jin-Woo Cho, Geon-Tae Park, Mikhail Kats, Sun-Kyung Kim, Eungkyu Lee","doi":"10.1515/nanoph-2024-0360","DOIUrl":null,"url":null,"abstract":"Achieving long-wavelength infrared (LWIR) cameras with high sensitivity and shorter exposure times faces challenges due to series reflections from high-refractive index lenses within compact optical systems. However, designing effective antireflective coatings to maximize light throughput in these systems is complicated by the limited range of transparent materials available for the LWIR. This scarcity narrows the degrees of freedom in design, complicating the optimization process for a system that aims to minimize the number of physical layers and address the inherent large refractive mismatch from high-index lenses. In this study, we use discrete-to-continuous optimization to design a subwavelength-thick antireflective multilayer coating on high-refractive index Si substrate for LWIR cameras, where the coating consists of few (e.g., five) alternating stacks of high- and low-refractive-index thin films (e.g., Ge-YF<jats:sub>3</jats:sub>, Ge-ZnS, or ZnS-YF<jats:sub>3</jats:sub>). Discrete optimization efficiently reveals the configuration of physical layers through binary optimization supported by a machine learning model. Continuous optimization identifies the optimal thickness of each coating layer using the conventional gradient method. As a result, considering the responsivity of a LWIR camera, the discrete-to-continuous strategy finds the optimal design of a 2.3-μm-thick antireflective coating on Si substrate consisting of five physical layers based on the Ge-YF<jats:sub>3</jats:sub> high-low index pair, showing an average reflectance of 0.54 % within the wavelength range of 8–13 μm. Moreover, conventional thin-film deposition (e.g., electron-beam evaporator) techniques successfully realize the designed structure, and Fourier-transform infrared spectroscopy (FTIR) and thermography confirm the high performance of the antireflective function.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"47 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0360","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving long-wavelength infrared (LWIR) cameras with high sensitivity and shorter exposure times faces challenges due to series reflections from high-refractive index lenses within compact optical systems. However, designing effective antireflective coatings to maximize light throughput in these systems is complicated by the limited range of transparent materials available for the LWIR. This scarcity narrows the degrees of freedom in design, complicating the optimization process for a system that aims to minimize the number of physical layers and address the inherent large refractive mismatch from high-index lenses. In this study, we use discrete-to-continuous optimization to design a subwavelength-thick antireflective multilayer coating on high-refractive index Si substrate for LWIR cameras, where the coating consists of few (e.g., five) alternating stacks of high- and low-refractive-index thin films (e.g., Ge-YF3, Ge-ZnS, or ZnS-YF3). Discrete optimization efficiently reveals the configuration of physical layers through binary optimization supported by a machine learning model. Continuous optimization identifies the optimal thickness of each coating layer using the conventional gradient method. As a result, considering the responsivity of a LWIR camera, the discrete-to-continuous strategy finds the optimal design of a 2.3-μm-thick antireflective coating on Si substrate consisting of five physical layers based on the Ge-YF3 high-low index pair, showing an average reflectance of 0.54 % within the wavelength range of 8–13 μm. Moreover, conventional thin-film deposition (e.g., electron-beam evaporator) techniques successfully realize the designed structure, and Fourier-transform infrared spectroscopy (FTIR) and thermography confirm the high performance of the antireflective function.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.