{"title":"Multiscale Modeling of Respiratory Transport Phenomena and Intersubject Variability","authors":"Stavros C. Kassinos, Josué Sznitman","doi":"10.1146/annurev-fluid-031424-103721","DOIUrl":null,"url":null,"abstract":"Our understanding of respiratory flow phenomena has been consolidated over decades with the exploration of in vitro and in silico canonical models that underscore the multiscale fluid mechanics spanning the vast airway complex. In recent years, there has been growing recognition of the significant intersubject variability characterizing the human lung morphometry that modulates underlying canonical flows across subjects. Despite outstanding challenges in modeling and validation approaches, exemplified foremost in capturing chronic respiratory diseases, the field is swiftly moving toward hybrid in silico whole-lung simulations that combine various model classes to resolve airflow and aerosol transport spanning the entire respiratory tract over cumulative breathing cycles. In the years to come, the prospect of accessible, community-curated datasets, in conjunction with the use of machine learning tools, could pave the way for in silico population-based studies to uncover unrecognized trends at the population level and deliver new respiratory diagnostic and pulmonary drug delivery endpoints.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"13 1","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-031424-103721","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Our understanding of respiratory flow phenomena has been consolidated over decades with the exploration of in vitro and in silico canonical models that underscore the multiscale fluid mechanics spanning the vast airway complex. In recent years, there has been growing recognition of the significant intersubject variability characterizing the human lung morphometry that modulates underlying canonical flows across subjects. Despite outstanding challenges in modeling and validation approaches, exemplified foremost in capturing chronic respiratory diseases, the field is swiftly moving toward hybrid in silico whole-lung simulations that combine various model classes to resolve airflow and aerosol transport spanning the entire respiratory tract over cumulative breathing cycles. In the years to come, the prospect of accessible, community-curated datasets, in conjunction with the use of machine learning tools, could pave the way for in silico population-based studies to uncover unrecognized trends at the population level and deliver new respiratory diagnostic and pulmonary drug delivery endpoints.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.