Insights into soil phosphorus bioavailability increase induced by periphytic biofilm decomposition: a comparison with straw decomposition

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2024-08-26 DOI:10.1007/s11104-024-06921-2
Suxian Liu, Lirong Wu, Junzhuo Liu, Yonghong Wu
{"title":"Insights into soil phosphorus bioavailability increase induced by periphytic biofilm decomposition: a comparison with straw decomposition","authors":"Suxian Liu, Lirong Wu, Junzhuo Liu, Yonghong Wu","doi":"10.1007/s11104-024-06921-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>In arable soil, the formation of occluded phosphate restricts the bioavailability of phosphorus (P). Straw incorporation effectively increases available P, but it stimulates CH<sub>4</sub> emission from paddy fields. Periphytic biofilms (PB), growing at soil-water interface, exert significant impacts on physical, chemical and biological characteristics of paddy soil. However, the effects of PB decomposition on P bioavailability remain unclear.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We conducted a microcosm experiment to explore the pathways how PB decomposition affected Olsen-P by comparing it with straw (ST) decomposition from perspectives of soil porosity, DOM compounds, reducing environment and microbial functions.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Both PB and ST decomposition significantly increased soil Olsen-P concentration, but their pathways differed substantially. PB decomposition primarily enhanced Olsen-P by augmenting soil porosity, recalcitrant DOM compounds, bacterial species richness, <i>bpp</i> gene abundance, and facilitating Fe<sup>3+</sup> reduction. Conversely, ST decomposition predominantly enhanced P bioavailability by augmenting soil reducibility.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>PB biomass decomposition has more significant effects on soil Olsen-P than ST by influencing soil porosity, DOM, microbial community and reducing environment characteristics. These insights will offer valuable perspectives for leveraging PB biomass to improve soil P availability and reduce P input in paddy ecosystems.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-06921-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims

In arable soil, the formation of occluded phosphate restricts the bioavailability of phosphorus (P). Straw incorporation effectively increases available P, but it stimulates CH4 emission from paddy fields. Periphytic biofilms (PB), growing at soil-water interface, exert significant impacts on physical, chemical and biological characteristics of paddy soil. However, the effects of PB decomposition on P bioavailability remain unclear.

Methods

We conducted a microcosm experiment to explore the pathways how PB decomposition affected Olsen-P by comparing it with straw (ST) decomposition from perspectives of soil porosity, DOM compounds, reducing environment and microbial functions.

Results

Both PB and ST decomposition significantly increased soil Olsen-P concentration, but their pathways differed substantially. PB decomposition primarily enhanced Olsen-P by augmenting soil porosity, recalcitrant DOM compounds, bacterial species richness, bpp gene abundance, and facilitating Fe3+ reduction. Conversely, ST decomposition predominantly enhanced P bioavailability by augmenting soil reducibility.

Conclusion

PB biomass decomposition has more significant effects on soil Olsen-P than ST by influencing soil porosity, DOM, microbial community and reducing environment characteristics. These insights will offer valuable perspectives for leveraging PB biomass to improve soil P availability and reduce P input in paddy ecosystems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透视附生生物膜分解引起的土壤磷生物利用率提高:与秸秆分解的比较
背景和目的在耕地土壤中,闭锁磷酸盐的形成限制了磷(P)的生物利用率。秸秆掺入可有效增加可用磷,但会刺激水稻田的甲烷排放。生长在土壤-水界面的附生生物膜(PB)对水稻田土壤的物理、化学和生物特性有显著影响。方法我们进行了一个微观世界实验,通过从土壤孔隙度、DOM 化合物、还原环境和微生物功能等角度比较 PB 和秸秆(ST)分解,探索 PB 分解对 Olsen-P 的影响途径。PB分解主要通过增加土壤孔隙度、难降解DOM化合物、细菌物种丰富度、bpp基因丰度以及促进Fe3+还原来提高Olsen-P。结论与 ST 相比,PB 生物质分解通过影响土壤孔隙度、DOM、微生物群落和还原环境特征,对土壤奥尔森-P 的影响更为显著。这些见解将为利用 PB 生物质提高土壤中 P 的可用性和减少水稻生态系统中 P 的投入提供有价值的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Early root architectural traits and their relationship with yield in Ipomoea batatas L Interactions of nitrogen and phosphorus in plant nutrition - Analysis of a 60-years old field experiment Soil bacterial communities are influenced by mulching methods and growth stages in dryland wheat fields Adaptation of Polygonatum genotypes to the areas of transplantation greatly influences the rhizospheric microbial community Soil water regulates plant diversity response to gradual and step nitrogen addition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1