Pub Date : 2025-02-24DOI: 10.1007/s11104-025-07311-y
Yongkang Ji, Nan Ma, Petr Heděnec, Yan Peng, Kai Yue, Jianxiao Zhu, Hui Zhang, Junjiong Shao, Lita Yi, Cuihuan Li, Qiqian Wu, Yan Li
Background and aims
Seasonal precipitation regimes can affect soil nitrogen (N) transformation rates, yet the underlying driving factors remain poorly studied.
Methods
To address this knowledge gap, we conducted a precipitation manipulation experiment in a subtropical forest in China from 2020 to 2022. We utilized the in situ resin-core method to assess soil physicochemical properties, microbial biomass, net nitrification rate (Nnit) and net N mineralization rate (Nmin) under three treatments: control (CK), decreased precipitation by 50% during the dry season with extremely increased precipitation (≥ 50 mm) during the wet season (IE) and decreased precipitation by 50% during the dry season with proportionally increased precipitation (≤ 20 mm) during the wet season (IP).
Results
IE and IP significantly decreased Nnit (57.9% and 72.5%, respectively) and Nmin (82.5% and 89.6%, respectively) during the dry season. However, the results were reversed during the wet season (increased by 64.3% and 79.5% and by 64.2% and 81.1%, respectively), and the effects of IP were significantly stronger than those of IE. Structural equation modeling indicated that seasonal precipitation regimes significantly affected Nnit and Nmin by changing soil water content, NH4+-N, microbial biomass N and soil C:N ratio. Moreover, Nnit and Nmin were mainly influenced by soil physicochemical properties during the dry season, whereas microbial biomass played a more important role during the wet season.
Conclusions
Seasonal precipitation regimes can significantly affect Nnit and Nmin in forest ecosystems, with the magnitude of these effects varying depending on the specific form of the seasonal precipitation regime.
{"title":"Impact of seasonal precipitation regimes on soil nitrogen transformation in a subtropical forest: Insights from a manipulation experiment","authors":"Yongkang Ji, Nan Ma, Petr Heděnec, Yan Peng, Kai Yue, Jianxiao Zhu, Hui Zhang, Junjiong Shao, Lita Yi, Cuihuan Li, Qiqian Wu, Yan Li","doi":"10.1007/s11104-025-07311-y","DOIUrl":"https://doi.org/10.1007/s11104-025-07311-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Seasonal precipitation regimes can affect soil nitrogen (N) transformation rates, yet the underlying driving factors remain poorly studied.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>To address this knowledge gap, we conducted a precipitation manipulation experiment in a subtropical forest in China from 2020 to 2022. We utilized the in situ resin-core method to assess soil physicochemical properties, microbial biomass, net nitrification rate (<i>N</i><sub>nit</sub>) and net N mineralization rate (<i>N</i><sub>min</sub>) under three treatments: control (CK), decreased precipitation by 50% during the dry season with extremely increased precipitation (≥ 50 mm) during the wet season (IE) and decreased precipitation by 50% during the dry season with proportionally increased precipitation (≤ 20 mm) during the wet season (IP).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>IE and IP significantly decreased <i>N</i><sub>nit</sub> (57.9% and 72.5%, respectively) and <i>N</i><sub>min</sub> (82.5% and 89.6%, respectively) during the dry season. However, the results were reversed during the wet season (increased by 64.3% and 79.5% and by 64.2% and 81.1%, respectively), and the effects of IP were significantly stronger than those of IE. Structural equation modeling indicated that seasonal precipitation regimes significantly affected <i>N</i><sub>nit</sub> and <i>N</i><sub>min</sub> by changing soil water content, NH<sub>4</sub><sup>+</sup>-N, microbial biomass N and soil C:N ratio. Moreover, <i>N</i><sub>nit</sub> and <i>N</i><sub>min</sub> were mainly influenced by soil physicochemical properties during the dry season, whereas microbial biomass played a more important role during the wet season.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Seasonal precipitation regimes can significantly affect <i>N</i><sub>nit</sub> and <i>N</i><sub>min</sub> in forest ecosystems, with the magnitude of these effects varying depending on the specific form of the seasonal precipitation regime. </p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"31 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143486018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1007/s11104-025-07309-6
Xiaofei Lu, Jie Li, Xinyi Zhou, Xu Yue
Background and aims
The effects of elevated tropospheric ozone (O3) concentrations on terrestrial ecosystems have been extensively researched by numerous O3 fumigation experiments and syntheses. While the detrimental impacts of O3 stress on aboveground plant physiological traits are well-documented, there remains a gap in our understanding of how elevated O3 influences soil microbes and plant–microbe interactions.
Methods
Here, we synthesized data from 71 O3 fumigation experiments conducted globally to evaluate the effects of elevated O3 on soil microbial characteristics, including biomass, community composition, and extracellular enzyme activities (EEAs).
Results
Elevated O3 led to an average reduction of 14.2% in microbial biomass carbon (MBC). It was largely attributable to decreased plant carbon input, as the effect size of MBC was closely correlated with declines in both aboveground and root biomass. Fungal communities appeared more vulnerable to O3 stress than bacterial communities, as evidenced by a 10.7% decrease in fungal phospholipid fatty acids (PLFAs), while total and bacterial PLFAs were only marginally affected. Furthermore, the negative impacts on microbes intensified with increasing O3 concentrations but tended to diminish over time. In addition, elevated O3 significantly reduced hydrolytic EEAs, which target simple compounds, by 12.9%, while increasing oxidative EEAs, which degrade recalcitrant compounds, by 12.0%. It suggests that O3 stress would affect the decomposition of soil organic matter by shifting EEAs.
Conclusion
Elevated O3 impairs soil microbial growth and changes microbial C utilization strategies, which could profoundly impact C cycling in terrestrial ecosystems.
{"title":"Negative effects of elevated ozone levels on soil microbial characteristics: a meta-analysis","authors":"Xiaofei Lu, Jie Li, Xinyi Zhou, Xu Yue","doi":"10.1007/s11104-025-07309-6","DOIUrl":"https://doi.org/10.1007/s11104-025-07309-6","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>The effects of elevated tropospheric ozone (O<sub>3</sub>) concentrations on terrestrial ecosystems have been extensively researched by numerous O<sub>3</sub> fumigation experiments and syntheses. While the detrimental impacts of O<sub>3</sub> stress on aboveground plant physiological traits are well-documented, there remains a gap in our understanding of how elevated O<sub>3</sub> influences soil microbes and plant–microbe interactions.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Here, we synthesized data from 71 O<sub>3</sub> fumigation experiments conducted globally to evaluate the effects of elevated O<sub>3</sub> on soil microbial characteristics, including biomass, community composition, and extracellular enzyme activities (EEAs).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Elevated O<sub>3</sub> led to an average reduction of 14.2% in microbial biomass carbon (MBC). It was largely attributable to decreased plant carbon input, as the effect size of MBC was closely correlated with declines in both aboveground and root biomass. Fungal communities appeared more vulnerable to O<sub>3</sub> stress than bacterial communities, as evidenced by a 10.7% decrease in fungal phospholipid fatty acids (PLFAs), while total and bacterial PLFAs were only marginally affected. Furthermore, the negative impacts on microbes intensified with increasing O<sub>3</sub> concentrations but tended to diminish over time. In addition, elevated O<sub>3</sub> significantly reduced hydrolytic EEAs, which target simple compounds, by 12.9%, while increasing oxidative EEAs, which degrade recalcitrant compounds, by 12.0%. It suggests that O<sub>3</sub> stress would affect the decomposition of soil organic matter by shifting EEAs.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Elevated O<sub>3</sub> impairs soil microbial growth and changes microbial C utilization strategies, which could profoundly impact C cycling in terrestrial ecosystems.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"22 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143486019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1007/s11104-025-07306-9
Pavel Baykalov, Gernot Bodner, Ivika Ostonen, Boris Rewald
Background and aims
Hyperspectral imaging is becoming a key, high-throughput technique in plant research. However, its application to roots has not yet received sufficient attention. The aims of this study are to identify spectral features that distinguish fine roots from soil, non-woody roots of different species, and dead from living roots, and to identify appropriate analytical techniques.
Methods
Roots of Alopecurus pratensis (meadow foxtail) and Urtica dioica (nettle) and the rhizosphere were imaged in rhizoboxes in the wavelength range 400–1700 nm, covering both visible near- (VISNIR) and shortwave infrared (SWIR) regions. Principal Component Analysis, K-means clustering, and Generalised Linear Model, Partial Least Squares Discriminant Analysis, and Distributed Random Forest models were used to classify groups. Wavebands critical for classification were identified.
Results
Our results demonstrate the intricate nature of spectra clustering, highlighting the challenges in the VISNIR range and the promise of SWIR data for enhanced separability. While species differentiation is challenging, the determination of the living conditions of the roots is possible within the SWIR range. The analysis reveals the significance of specific spectral regions, notably those associated with water content and senescence, in distinguishing between living and dead roots. Water content regions (mainly 1245 nm and 1450 nm) were most important in discriminating between roots and soil.
Conclusions
This study highlights the potential of spectral analysis, particularly in the SWIR region, for distinguishing roots by species and vitality. Further efforts are needed to develop robust methods for mixed data sets containing roots of different species and degrees of vitality.