The interlayer twist effectively regulates interlayer excitons in InSe/Sb van der Waals heterostructure

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-08-26 DOI:10.1038/s41524-024-01384-6
Anqi Shi, Ruilin Guan, Jin Lv, Zifan Niu, Wenxia Zhang, Shiyan Wang, Xiuyun Zhang, Bing Wang, Xianghong Niu
{"title":"The interlayer twist effectively regulates interlayer excitons in InSe/Sb van der Waals heterostructure","authors":"Anqi Shi, Ruilin Guan, Jin Lv, Zifan Niu, Wenxia Zhang, Shiyan Wang, Xiuyun Zhang, Bing Wang, Xianghong Niu","doi":"10.1038/s41524-024-01384-6","DOIUrl":null,"url":null,"abstract":"<p>The interlayer twist angle endows a new degree of freedom to manipulate the spatially separated interlayer excitons in van der Waals (vdWs) heterostructures. Herein, we find that the band-edge Γ-Γ interlayer excitation directly forms interlayer exciton in InSe/Sb heterostructure, different from that of transition metal dichalcogenides (TMDs) heterostructures in two-step processes by intralayer excitation and transfer. By tuning the interlayer coupling and breathing vibrational modes associated with the Γ-Γ photoexcitation, the interlayer twist can significantly adjust the excitation peak position and lifetime of recombination. The interlayer excitation peak in InSe/Sb heterostructure can shift ~400 meV, and the interlayer exciton lifetime varies in hundreds of nanoseconds as a periodic function of the twist angle (0°–60°). This work enriches the understanding of interlayer exciton formation and facilitates the artificial excitonic engineering of vdWs heterostructures.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"56 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01384-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The interlayer twist angle endows a new degree of freedom to manipulate the spatially separated interlayer excitons in van der Waals (vdWs) heterostructures. Herein, we find that the band-edge Γ-Γ interlayer excitation directly forms interlayer exciton in InSe/Sb heterostructure, different from that of transition metal dichalcogenides (TMDs) heterostructures in two-step processes by intralayer excitation and transfer. By tuning the interlayer coupling and breathing vibrational modes associated with the Γ-Γ photoexcitation, the interlayer twist can significantly adjust the excitation peak position and lifetime of recombination. The interlayer excitation peak in InSe/Sb heterostructure can shift ~400 meV, and the interlayer exciton lifetime varies in hundreds of nanoseconds as a periodic function of the twist angle (0°–60°). This work enriches the understanding of interlayer exciton formation and facilitates the artificial excitonic engineering of vdWs heterostructures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层间扭曲有效调节 InSe/Sb 范德华异质结构中的层间激子
层间扭转角为操纵范德华(vdWs)异质结构中空间分离的层间激子提供了新的自由度。在这里,我们发现带边Γ-Γ层间激发在 InSe/Sb 异质结构中直接形成了层间激子,这与过渡金属二卤化物(TMDs)异质结构中通过层内激发和转移两步过程形成的激子不同。通过调整与Γ-Γ光激发相关的层间耦合和呼吸振动模式,层间扭曲可以显著调整激发峰位置和重组寿命。InSe/Sb 异质结构中的层间激发峰可移动约 400 meV,层间激子寿命随扭转角(0°-60°)的周期性变化而变化,为数百纳秒。这项工作丰富了人们对层间激子形成的理解,并促进了 vdWs 异质结构的人工激子工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Deep learning potential model of displacement damage in hafnium oxide ferroelectric films Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1