{"title":"Learning dislocation dynamics mobility laws from large-scale MD simulations","authors":"Nicolas Bertin, Vasily V. Bulatov, Fei Zhou","doi":"10.1038/s41524-024-01378-4","DOIUrl":null,"url":null,"abstract":"<p>By dispensing with all the atoms and only focusing on dislocation lines, the computational method of Discrete Dislocation Dynamics (DDD) gains greatly over Molecular Dynamics (MD) in simulation efficiency of metal plasticity. But whereas in MD dislocations follow natural dynamics of atomic motion, DDD must rely on a dislocation mobility function to prescribe how a dislocation line should respond to the driving force exerted on it. However, reflecting our still incomplete understanding of ways in which dislocations move, mobility functions presently employed in DDD simulations entail simplifications and approximations of limited or, worse still, unknown accuracy and applicability. Here we introduce a data-driven approach in which the dislocation mobility function is modeled as a graph neural network (GNN) trained on large-scale MD simulations of crystal plasticity. We apply our proposed approach to predicting plastic strength of body-centered-cubic (BCC) metal tungsten and show that, once implemented in a DDD model, our GNN dislocation mobility function accurately reproduces the challenging tension/compression asymmetry of plastic flow observed both in ground-truth MD simulations and in experiment. Furthermore, subsequently validated by MD simulations, the same function accurately predicts plastic response of tungsten under conditions not previously seen in training. By demonstrating its ability to learn relevant physics of dislocation motion, our DDD+ML approach opens a promising avenue to bringing fidelity of DDD models closer in line with direct MD simulations at a much reduced computational cost.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"98 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01378-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
By dispensing with all the atoms and only focusing on dislocation lines, the computational method of Discrete Dislocation Dynamics (DDD) gains greatly over Molecular Dynamics (MD) in simulation efficiency of metal plasticity. But whereas in MD dislocations follow natural dynamics of atomic motion, DDD must rely on a dislocation mobility function to prescribe how a dislocation line should respond to the driving force exerted on it. However, reflecting our still incomplete understanding of ways in which dislocations move, mobility functions presently employed in DDD simulations entail simplifications and approximations of limited or, worse still, unknown accuracy and applicability. Here we introduce a data-driven approach in which the dislocation mobility function is modeled as a graph neural network (GNN) trained on large-scale MD simulations of crystal plasticity. We apply our proposed approach to predicting plastic strength of body-centered-cubic (BCC) metal tungsten and show that, once implemented in a DDD model, our GNN dislocation mobility function accurately reproduces the challenging tension/compression asymmetry of plastic flow observed both in ground-truth MD simulations and in experiment. Furthermore, subsequently validated by MD simulations, the same function accurately predicts plastic response of tungsten under conditions not previously seen in training. By demonstrating its ability to learn relevant physics of dislocation motion, our DDD+ML approach opens a promising avenue to bringing fidelity of DDD models closer in line with direct MD simulations at a much reduced computational cost.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.