Jiaojiao Fang, Yan Tang, Changda Gong, Zejun Huang, Yanjun Feng, Guixia Liu, Yun Tang, Weihua Li
{"title":"Prediction of Cytochrome P450 Substrates Using the Explainable Multitask Deep Learning Models.","authors":"Jiaojiao Fang, Yan Tang, Changda Gong, Zejun Huang, Yanjun Feng, Guixia Liu, Yun Tang, Weihua Li","doi":"10.1021/acs.chemrestox.4c00199","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochromes P450 (P450s or CYPs) are the most important phase I metabolic enzymes in the human body and are responsible for metabolizing ∼75% of the clinically used drugs. P450-mediated metabolism is also closely associated with the formation of toxic metabolites and drug-drug interactions. Therefore, it is of high importance to predict if a compound is the substrate of a given P450 in the early stage of drug development. In this study, we built the multitask learning models to simultaneously predict the substrates of five major drug-metabolizing P450 enzymes, namely, CYP3A4, 2C9, 2C19, 2D6, and 1A2, based on the collected substrate data sets. Compared to the single-task model and conventional machine learning models, the multitask fingerprints and graph neural networks model achieved superior performance with the average AUC values of 90.8% on the test set. Notably, the multitask model demonstrated its good performance on the small amount of substrate data sets such as CYP1A2, 2C9, and 2C19. In addition, the Shapley additive explanation and the attention mechanism were used to reveal specific substructures associated with P450 substrates, which were further confirmed and complemented by the substructure mining tool and the literature.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1535-1548"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00199","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cytochromes P450 (P450s or CYPs) are the most important phase I metabolic enzymes in the human body and are responsible for metabolizing ∼75% of the clinically used drugs. P450-mediated metabolism is also closely associated with the formation of toxic metabolites and drug-drug interactions. Therefore, it is of high importance to predict if a compound is the substrate of a given P450 in the early stage of drug development. In this study, we built the multitask learning models to simultaneously predict the substrates of five major drug-metabolizing P450 enzymes, namely, CYP3A4, 2C9, 2C19, 2D6, and 1A2, based on the collected substrate data sets. Compared to the single-task model and conventional machine learning models, the multitask fingerprints and graph neural networks model achieved superior performance with the average AUC values of 90.8% on the test set. Notably, the multitask model demonstrated its good performance on the small amount of substrate data sets such as CYP1A2, 2C9, and 2C19. In addition, the Shapley additive explanation and the attention mechanism were used to reveal specific substructures associated with P450 substrates, which were further confirmed and complemented by the substructure mining tool and the literature.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.