Delphine Sapaly, Flore Cheguillaume, Laure Weill, Zoé Clerc, Olivier Biondi, Sabrina Bendris, Céline Buon, Rasha Slika, Elsie Piller, Venkat Krishnan Sundaram, Andreia da Silva Ramos, Maria Del Mar Amador, Timothée Lenglet, Rabab Debs, Nadine Le Forestier, Pierre-François Pradat, François Salachas, Lucette Lacomblez, Adèle Hesters, Didier Borderie, David Devos, Claude Desnuelle, Anne-Sophie Rolland, Baptiste Periou, Stéphane Vasseur, Maud Chapart, Isabelle Le Ber, Anne-Laure Fauret-Amsellem, Stéphanie Millecamps, Thierry Maisonobe, Sarah Leonard-Louis, Anthony Behin, François-Jérôme Authier, Teresinha Evangelista, Frédéric Charbonnier, Gaëlle Bruneteau
{"title":"Dysregulation of muscle cholesterol transport in amyotrophic lateral sclerosis.","authors":"Delphine Sapaly, Flore Cheguillaume, Laure Weill, Zoé Clerc, Olivier Biondi, Sabrina Bendris, Céline Buon, Rasha Slika, Elsie Piller, Venkat Krishnan Sundaram, Andreia da Silva Ramos, Maria Del Mar Amador, Timothée Lenglet, Rabab Debs, Nadine Le Forestier, Pierre-François Pradat, François Salachas, Lucette Lacomblez, Adèle Hesters, Didier Borderie, David Devos, Claude Desnuelle, Anne-Sophie Rolland, Baptiste Periou, Stéphane Vasseur, Maud Chapart, Isabelle Le Ber, Anne-Laure Fauret-Amsellem, Stéphanie Millecamps, Thierry Maisonobe, Sarah Leonard-Louis, Anthony Behin, François-Jérôme Authier, Teresinha Evangelista, Frédéric Charbonnier, Gaëlle Bruneteau","doi":"10.1093/brain/awae270","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motor neurons, with a typical lifespan of 3-5 years. Altered metabolism is a key feature of ALS that strongly influences prognosis, with an increase in whole body energy expenditure and changes in skeletal muscle metabolism, including greater reliance on fat oxidation. Dyslipidaemia has been described in ALS as part of the metabolic dysregulation, but its role in the pathophysiology of the disease remains controversial. Among the lipids, cholesterol is of particular interest as a vital component of cell membranes, playing a key role in signal transduction and mitochondrial function in muscle. The aim of this study was to investigate whether motor dysfunction in ALS might be associated with dysregulation of muscle cholesterol metabolism. We determined cholesterol content and analysed the expression of key determinants of the cholesterol metabolism pathway in muscle biopsies from 13 ALS patients and 10 asymptomatic ALS-mutation gene carriers compared to 16 control subjects. Using human control primary myotubes, we investigated the potential contribution of cholesterol dyshomeostasis to reliance on mitochondrial fatty acid. We found that cholesterol accumulates in the skeletal muscle of ALS patients and that cholesterol overload significantly correlates with disease severity evaluated by the Revised ALS Functional Rating Scale. These defects are associated with overexpression of the genes of the lysosomal cholesterol transporters Niemann-Pick type C1 (NPC1) and 2 (NPC2), which are required for cholesterol transfer from late endosomes/lysosomes to cellular membranes. Most notably, a significant increase in NPC2 mRNA levels could be detected in muscle samples from asymptomatic ALS-mutation carriers, long before disease onset. We found that filipin-stained unesterified cholesterol accumulated in the lysosomal compartment in ALS muscle samples, suggesting dysfunction of the NPC1/2 system. Accordingly, we report here that experimental NPC1 inhibition or lysosomal pH alteration in human primary myotubes was sufficient to induce the overexpression of NPC1 and NPC2 mRNA. Finally, acute NPC1 inhibition in human control myotubes induced a shift towards a preferential use of fatty acids, thus reproducing the metabolic defect characteristic of ALS muscle. We conclude that cholesterol homeostasis is dysregulated in ALS muscle from the presymptomatic stage. Targeting NPC1/2 dysfunction may be a new therapeutic strategy for ALS to restore muscle energy metabolism and slow motor symptom progression.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":" ","pages":"788-802"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae270","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motor neurons, with a typical lifespan of 3-5 years. Altered metabolism is a key feature of ALS that strongly influences prognosis, with an increase in whole body energy expenditure and changes in skeletal muscle metabolism, including greater reliance on fat oxidation. Dyslipidaemia has been described in ALS as part of the metabolic dysregulation, but its role in the pathophysiology of the disease remains controversial. Among the lipids, cholesterol is of particular interest as a vital component of cell membranes, playing a key role in signal transduction and mitochondrial function in muscle. The aim of this study was to investigate whether motor dysfunction in ALS might be associated with dysregulation of muscle cholesterol metabolism. We determined cholesterol content and analysed the expression of key determinants of the cholesterol metabolism pathway in muscle biopsies from 13 ALS patients and 10 asymptomatic ALS-mutation gene carriers compared to 16 control subjects. Using human control primary myotubes, we investigated the potential contribution of cholesterol dyshomeostasis to reliance on mitochondrial fatty acid. We found that cholesterol accumulates in the skeletal muscle of ALS patients and that cholesterol overload significantly correlates with disease severity evaluated by the Revised ALS Functional Rating Scale. These defects are associated with overexpression of the genes of the lysosomal cholesterol transporters Niemann-Pick type C1 (NPC1) and 2 (NPC2), which are required for cholesterol transfer from late endosomes/lysosomes to cellular membranes. Most notably, a significant increase in NPC2 mRNA levels could be detected in muscle samples from asymptomatic ALS-mutation carriers, long before disease onset. We found that filipin-stained unesterified cholesterol accumulated in the lysosomal compartment in ALS muscle samples, suggesting dysfunction of the NPC1/2 system. Accordingly, we report here that experimental NPC1 inhibition or lysosomal pH alteration in human primary myotubes was sufficient to induce the overexpression of NPC1 and NPC2 mRNA. Finally, acute NPC1 inhibition in human control myotubes induced a shift towards a preferential use of fatty acids, thus reproducing the metabolic defect characteristic of ALS muscle. We conclude that cholesterol homeostasis is dysregulated in ALS muscle from the presymptomatic stage. Targeting NPC1/2 dysfunction may be a new therapeutic strategy for ALS to restore muscle energy metabolism and slow motor symptom progression.
期刊介绍:
Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.